Prediction of significant prostate cancer in biopsy-naïve men: Validation of a novel risk model combining MRI and clinical parameters and comparison to an ERSPC risk calculator and PI-RADS.
<h4>Background</h4>Risk models (RM) need external validation to assess their value beyond the setting in which they were developed. We validated a RM combining mpMRI and clinical parameters for the probability of harboring significant prostate cancer (sPC, Gleason Score ≥ 3+4) for biopsy...
Main Authors: | , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0221350 |
_version_ | 1819140190935973888 |
---|---|
author | Jan Philipp Radtke Francesco Giganti Manuel Wiesenfarth Armando Stabile Jose Marenco Clement Orczyk Veeru Kasivisvanathan Joanne Nyaboe Nyarangi-Dix Viktoria Schütz Svenja Dieffenbacher Magdalena Görtz Albrecht Stenzinger Wilfried Roth Alex Freeman Shonit Punwani David Bonekamp Heinz-Peter Schlemmer Markus Hohenfellner Mark Emberton Caroline M Moore |
author_facet | Jan Philipp Radtke Francesco Giganti Manuel Wiesenfarth Armando Stabile Jose Marenco Clement Orczyk Veeru Kasivisvanathan Joanne Nyaboe Nyarangi-Dix Viktoria Schütz Svenja Dieffenbacher Magdalena Görtz Albrecht Stenzinger Wilfried Roth Alex Freeman Shonit Punwani David Bonekamp Heinz-Peter Schlemmer Markus Hohenfellner Mark Emberton Caroline M Moore |
author_sort | Jan Philipp Radtke |
collection | DOAJ |
description | <h4>Background</h4>Risk models (RM) need external validation to assess their value beyond the setting in which they were developed. We validated a RM combining mpMRI and clinical parameters for the probability of harboring significant prostate cancer (sPC, Gleason Score ≥ 3+4) for biopsy-naïve men.<h4>Material and methods</h4>The original RM was based on data of 670 biopsy-naïve men from Heidelberg University Hospital who underwent mpMRI with PI-RADS scoring prior to MRI/TRUS-fusion biopsy 2012-2015. Validity was tested by a consecutive cohort of biopsy-naïve men from Heidelberg (n = 160) and externally by a cohort of 133 men from University College London Hospital (UCLH). Assessment of validity was performed at fusion-biopsy by calibration plots, receiver operating characteristics curve and decision curve analyses. The RM`s performance was compared to ERSPC-RC3, ERSPC-RC3+PI-RADSv1.0 and PI-RADSv1.0 alone.<h4>Results</h4>SPC was detected in 76 men (48%) at Heidelberg and 38 men (29%) at UCLH. The areas under the curve (AUC) were 0.86 for the RM in both cohorts. For ERSPC-RC3+PI-RADSv1.0 the AUC was 0.84 in Heidelberg and 0.82 at UCLH, for ERSPC-RC3 0.76 at Heidelberg and 0.77 at UCLH and for PI-RADSv1.0 0.79 in Heidelberg and 0.82 at UCLH. Calibration curves suggest that prevalence of sPC needs to be adjusted to local circumstances, as the RM overestimated the risk of harboring sPC in the UCLH cohort. After prevalence-adjustment with respect to the prevalence underlying ERSPC-RC3 to ensure a generalizable comparison, not only between the Heidelberg and die UCLH subgroup, the RM`s Net benefit was superior over the ERSPC`s and the mpMRI`s for threshold probabilities above 0.1 in both cohorts.<h4>Conclusions</h4>The RM discriminated well between men with and without sPC at initial MRI-targeted biopsy but overestimated the sPC-risk at UCLH. Taking prevalence into account, the model demonstrated benefit compared with clinical risk calculators and PI-RADSv1.0 in making the decision to biopsy men at suspicion of PC. However, prevalence differences must be taken into account when using or validating the presented risk model. |
first_indexed | 2024-12-22T11:34:38Z |
format | Article |
id | doaj.art-4e1cafc4062a4c3aad8f30915356e089 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-22T11:34:38Z |
publishDate | 2019-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-4e1cafc4062a4c3aad8f30915356e0892022-12-21T18:27:28ZengPublic Library of Science (PLoS)PLoS ONE1932-62032019-01-01148e022135010.1371/journal.pone.0221350Prediction of significant prostate cancer in biopsy-naïve men: Validation of a novel risk model combining MRI and clinical parameters and comparison to an ERSPC risk calculator and PI-RADS.Jan Philipp RadtkeFrancesco GigantiManuel WiesenfarthArmando StabileJose MarencoClement OrczykVeeru KasivisvanathanJoanne Nyaboe Nyarangi-DixViktoria SchützSvenja DieffenbacherMagdalena GörtzAlbrecht StenzingerWilfried RothAlex FreemanShonit PunwaniDavid BonekampHeinz-Peter SchlemmerMarkus HohenfellnerMark EmbertonCaroline M Moore<h4>Background</h4>Risk models (RM) need external validation to assess their value beyond the setting in which they were developed. We validated a RM combining mpMRI and clinical parameters for the probability of harboring significant prostate cancer (sPC, Gleason Score ≥ 3+4) for biopsy-naïve men.<h4>Material and methods</h4>The original RM was based on data of 670 biopsy-naïve men from Heidelberg University Hospital who underwent mpMRI with PI-RADS scoring prior to MRI/TRUS-fusion biopsy 2012-2015. Validity was tested by a consecutive cohort of biopsy-naïve men from Heidelberg (n = 160) and externally by a cohort of 133 men from University College London Hospital (UCLH). Assessment of validity was performed at fusion-biopsy by calibration plots, receiver operating characteristics curve and decision curve analyses. The RM`s performance was compared to ERSPC-RC3, ERSPC-RC3+PI-RADSv1.0 and PI-RADSv1.0 alone.<h4>Results</h4>SPC was detected in 76 men (48%) at Heidelberg and 38 men (29%) at UCLH. The areas under the curve (AUC) were 0.86 for the RM in both cohorts. For ERSPC-RC3+PI-RADSv1.0 the AUC was 0.84 in Heidelberg and 0.82 at UCLH, for ERSPC-RC3 0.76 at Heidelberg and 0.77 at UCLH and for PI-RADSv1.0 0.79 in Heidelberg and 0.82 at UCLH. Calibration curves suggest that prevalence of sPC needs to be adjusted to local circumstances, as the RM overestimated the risk of harboring sPC in the UCLH cohort. After prevalence-adjustment with respect to the prevalence underlying ERSPC-RC3 to ensure a generalizable comparison, not only between the Heidelberg and die UCLH subgroup, the RM`s Net benefit was superior over the ERSPC`s and the mpMRI`s for threshold probabilities above 0.1 in both cohorts.<h4>Conclusions</h4>The RM discriminated well between men with and without sPC at initial MRI-targeted biopsy but overestimated the sPC-risk at UCLH. Taking prevalence into account, the model demonstrated benefit compared with clinical risk calculators and PI-RADSv1.0 in making the decision to biopsy men at suspicion of PC. However, prevalence differences must be taken into account when using or validating the presented risk model.https://doi.org/10.1371/journal.pone.0221350 |
spellingShingle | Jan Philipp Radtke Francesco Giganti Manuel Wiesenfarth Armando Stabile Jose Marenco Clement Orczyk Veeru Kasivisvanathan Joanne Nyaboe Nyarangi-Dix Viktoria Schütz Svenja Dieffenbacher Magdalena Görtz Albrecht Stenzinger Wilfried Roth Alex Freeman Shonit Punwani David Bonekamp Heinz-Peter Schlemmer Markus Hohenfellner Mark Emberton Caroline M Moore Prediction of significant prostate cancer in biopsy-naïve men: Validation of a novel risk model combining MRI and clinical parameters and comparison to an ERSPC risk calculator and PI-RADS. PLoS ONE |
title | Prediction of significant prostate cancer in biopsy-naïve men: Validation of a novel risk model combining MRI and clinical parameters and comparison to an ERSPC risk calculator and PI-RADS. |
title_full | Prediction of significant prostate cancer in biopsy-naïve men: Validation of a novel risk model combining MRI and clinical parameters and comparison to an ERSPC risk calculator and PI-RADS. |
title_fullStr | Prediction of significant prostate cancer in biopsy-naïve men: Validation of a novel risk model combining MRI and clinical parameters and comparison to an ERSPC risk calculator and PI-RADS. |
title_full_unstemmed | Prediction of significant prostate cancer in biopsy-naïve men: Validation of a novel risk model combining MRI and clinical parameters and comparison to an ERSPC risk calculator and PI-RADS. |
title_short | Prediction of significant prostate cancer in biopsy-naïve men: Validation of a novel risk model combining MRI and clinical parameters and comparison to an ERSPC risk calculator and PI-RADS. |
title_sort | prediction of significant prostate cancer in biopsy naive men validation of a novel risk model combining mri and clinical parameters and comparison to an erspc risk calculator and pi rads |
url | https://doi.org/10.1371/journal.pone.0221350 |
work_keys_str_mv | AT janphilippradtke predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT francescogiganti predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT manuelwiesenfarth predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT armandostabile predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT josemarenco predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT clementorczyk predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT veerukasivisvanathan predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT joannenyaboenyarangidix predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT viktoriaschutz predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT svenjadieffenbacher predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT magdalenagortz predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT albrechtstenzinger predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT wilfriedroth predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT alexfreeman predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT shonitpunwani predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT davidbonekamp predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT heinzpeterschlemmer predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT markushohenfellner predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT markemberton predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads AT carolinemmoore predictionofsignificantprostatecancerinbiopsynaivemenvalidationofanovelriskmodelcombiningmriandclinicalparametersandcomparisontoanerspcriskcalculatorandpirads |