On a Fractional in Time Nonlinear Schrödinger Equation with Dispersion Parameter and Absorption Coefficient

This paper is concerned with the nonexistence of global solutions to fractional in time nonlinear Schrödinger equations of the form <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>i</mi> <mi>α</mi> </msup> &...

Full description

Bibliographic Details
Main Authors: Mohamed Jleli, Bessem Samet, Calogero Vetro
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/7/1197
Description
Summary:This paper is concerned with the nonexistence of global solutions to fractional in time nonlinear Schrödinger equations of the form <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>i</mi> <mi>α</mi> </msup> <msubsup> <mo>∂</mo> <mi>t</mi> <mi>α</mi> </msubsup> <mi>ω</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>Δ</mo> <mi>ω</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>i</mi> <mi>α</mi> </msup> <msub> <mi>a</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>ω</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>ξ</mi> <msup> <mrow> <mo>|</mo> <mi>ω</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mi>p</mi> </msup> <mo>,</mo> <mspace width="1.em"></mspace> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>∈</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mo>∞</mo> <mo>)</mo> </mrow> <mo>×</mo> <msup> <mi mathvariant="double-struck">R</mi> <mi>N</mi> </msup> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>≥</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ξ</mi> <mo>∈</mo> <mi mathvariant="double-struck">C</mi> <mo>\</mo> <mo>{</mo> <mn>0</mn> <mo>}</mo> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, under suitable initial data. To establish our nonexistence theorem, we adopt the Pohozaev nonlinear capacity method, and consider the combined effects of absorption and dispersion terms. Further, we discuss in details some special cases of coefficient functions <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>∈</mo> <msubsup> <mi>L</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>c</mi> </mrow> <mn>1</mn> </msubsup> <mrow> <mo>(</mo> <mrow> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mo>∞</mo> <mo>)</mo> </mrow> <mo>,</mo> <mi mathvariant="double-struck">R</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, and provide two illustrative examples.
ISSN:2073-8994