A Universal Graphical Solution to Calculating Seepage in Excavation of Anisotropic Soils and Non-Limited Scenarios

The interaction between groundwater and civil engineering works is a key aspect in geotechnical design. In the case of excavations confined in sheet pile walls, steel sheeting, diaphragm walls, cut-off walls, or cofferdams, this design requires the estimation, among other soil mechanics properties,...

Full description

Bibliographic Details
Main Authors: Salvador Navarro Carrasco, José Antonio Jiménez-Valera, Ivan Alhama
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Geotechnics
Subjects:
Online Access:https://www.mdpi.com/2673-7094/3/3/39
Description
Summary:The interaction between groundwater and civil engineering works is a key aspect in geotechnical design. In the case of excavations confined in sheet pile walls, steel sheeting, diaphragm walls, cut-off walls, or cofferdams, this design requires the estimation, among other soil mechanics properties, of the groundwater flowing into the excavation (seepage) caused by piezometry depletion. Numerical methods, graphical solutions, and analytical procedures are the methodologies traditionally used to solve this issue, solutions of which require an understanding of basic soil mechanical properties, hydraulic conditions and structure geometry. In this work, the discriminated non-dimensionalization technique is applied to obtain, for the first time, the dimensionless groups that govern the seepage, in anisotropic conditions, in large-scale scenarios where groundwater flow is not conditioned by impervious bedrock or the length of the back of the wall: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="sans-serif">π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mfrac><mrow><mi mathvariant="normal">a</mi></mrow><mrow><mi mathvariant="normal">b</mi></mrow></mfrac><mo>,</mo><msub><mrow><mi mathvariant="sans-serif">π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mfrac><mrow><msub><mrow><mi mathvariant="normal">k</mi></mrow><mrow><mi mathvariant="normal">x</mi></mrow></msub><msup><mrow><mi mathvariant="normal">b</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msub><mrow><mi mathvariant="normal">k</mi></mrow><mrow><mi mathvariant="normal">y</mi></mrow></msub><msup><mrow><mi mathvariant="normal">c</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo> </mo></mrow></semantics></math></inline-formula>and, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mi mathvariant="sans-serif">π</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mi mathvariant="normal">T</mi><mo>/</mo><mi mathvariant="normal">b</mi></mrow></semantics></math></inline-formula>. Numerical simulations are carried out to check the validity of dimensionless groups and to develop three sets of type curves that relate to these groups. Once the physical and geometrical data are known, the seepage (Q), the characteristic depth (T*) and the characteristic horizontal extension (L*) can be directly and easily calculated from these abacuses. The influence of anisotropy on the characteristic lengths is also addressed.
ISSN:2673-7094