Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction

Recent breakthroughs with numerous visual experiences using mobile devices encourage the research of human-computer interaction (HCI) involving hand gesture recognition for Holograms, Virtual Reality, and Augmented Reality. The rise of these technologies allows educators in medical segments to apply...

Full description

Bibliographic Details
Main Authors: Zainal Abdul Kahar, Puteri Suhaiza Sulaiman, Fatimah Khalid, Azreen Azman
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9591567/
_version_ 1818931217336107008
author Zainal Abdul Kahar
Puteri Suhaiza Sulaiman
Fatimah Khalid
Azreen Azman
author_facet Zainal Abdul Kahar
Puteri Suhaiza Sulaiman
Fatimah Khalid
Azreen Azman
author_sort Zainal Abdul Kahar
collection DOAJ
description Recent breakthroughs with numerous visual experiences using mobile devices encourage the research of human-computer interaction (HCI) involving hand gesture recognition for Holograms, Virtual Reality, and Augmented Reality. The rise of these technologies allows educators in medical segments to apply new pedagogy by interacting with virtual content in a coherent learning environment. This paper proposed the Central Nervous System (CNS) interaction using the Skeleton Joints Moment (SJM) approach for dimension reduction with k Nearest Neighbour (k-NN) for hand gesture classification. Over the past few decades, researchers have proposed various techniques in dimension reduction. One of the methods is principal component analysis (PCA). Experimental results indicated that the SJM technique has similar accuracy to PCA, where both methods showed 96&#x0025; of prediction using hand skeleton joints data. In addition, PCA has a higher uncertainty of mean error 0.75 compared to SJM at only 0.01. Furthermore, PCA has the worst complexity of <inline-formula> <tex-math notation="LaTeX">$O(min(p^{3},n^{3}))$ </tex-math></inline-formula> where SJM <inline-formula> <tex-math notation="LaTeX">$O(n/d)$ </tex-math></inline-formula>. Evaluation results using the T-Test showed a significant difference between SJM and PCA where <inline-formula> <tex-math notation="LaTeX">$p &lt; 0.05$ </tex-math></inline-formula>. Thus, there is evidence to reject the null hypothesis.
first_indexed 2024-12-20T04:13:05Z
format Article
id doaj.art-4e266d5f8ae74008b6476774fe2c96ec
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-20T04:13:05Z
publishDate 2021-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-4e266d5f8ae74008b6476774fe2c96ec2022-12-21T19:53:51ZengIEEEIEEE Access2169-35362021-01-01914664014665210.1109/ACCESS.2021.31235709591567Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System InteractionZainal Abdul Kahar0https://orcid.org/0000-0002-5291-4395Puteri Suhaiza Sulaiman1https://orcid.org/0000-0002-8350-556XFatimah Khalid2https://orcid.org/0000-0002-5791-065XAzreen Azman3https://orcid.org/0000-0002-4118-4809Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Kembangan, MalaysiaFaculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Kembangan, MalaysiaFaculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Kembangan, MalaysiaFaculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Kembangan, MalaysiaRecent breakthroughs with numerous visual experiences using mobile devices encourage the research of human-computer interaction (HCI) involving hand gesture recognition for Holograms, Virtual Reality, and Augmented Reality. The rise of these technologies allows educators in medical segments to apply new pedagogy by interacting with virtual content in a coherent learning environment. This paper proposed the Central Nervous System (CNS) interaction using the Skeleton Joints Moment (SJM) approach for dimension reduction with k Nearest Neighbour (k-NN) for hand gesture classification. Over the past few decades, researchers have proposed various techniques in dimension reduction. One of the methods is principal component analysis (PCA). Experimental results indicated that the SJM technique has similar accuracy to PCA, where both methods showed 96&#x0025; of prediction using hand skeleton joints data. In addition, PCA has a higher uncertainty of mean error 0.75 compared to SJM at only 0.01. Furthermore, PCA has the worst complexity of <inline-formula> <tex-math notation="LaTeX">$O(min(p^{3},n^{3}))$ </tex-math></inline-formula> where SJM <inline-formula> <tex-math notation="LaTeX">$O(n/d)$ </tex-math></inline-formula>. Evaluation results using the T-Test showed a significant difference between SJM and PCA where <inline-formula> <tex-math notation="LaTeX">$p &lt; 0.05$ </tex-math></inline-formula>. Thus, there is evidence to reject the null hypothesis.https://ieeexplore.ieee.org/document/9591567/Hand gesture recognitiondimensionality reductionmachine learninghologram
spellingShingle Zainal Abdul Kahar
Puteri Suhaiza Sulaiman
Fatimah Khalid
Azreen Azman
Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
IEEE Access
Hand gesture recognition
dimensionality reduction
machine learning
hologram
title Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
title_full Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
title_fullStr Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
title_full_unstemmed Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
title_short Skeleton Joints Moment (SJM): A Hand Gesture Dimensionality Reduction for Central Nervous System Interaction
title_sort skeleton joints moment sjm a hand gesture dimensionality reduction for central nervous system interaction
topic Hand gesture recognition
dimensionality reduction
machine learning
hologram
url https://ieeexplore.ieee.org/document/9591567/
work_keys_str_mv AT zainalabdulkahar skeletonjointsmomentsjmahandgesturedimensionalityreductionforcentralnervoussysteminteraction
AT puterisuhaizasulaiman skeletonjointsmomentsjmahandgesturedimensionalityreductionforcentralnervoussysteminteraction
AT fatimahkhalid skeletonjointsmomentsjmahandgesturedimensionalityreductionforcentralnervoussysteminteraction
AT azreenazman skeletonjointsmomentsjmahandgesturedimensionalityreductionforcentralnervoussysteminteraction