Transport and Electrochemical Properties of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-Li<sub>2</sub>TiO<sub>3</sub> and Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-TiO<sub>2</sub> Composites

The study demonstrates that the introduction of the electrochemically inactive dielectric additive Li<sub>2</sub>TiO<sub>3</sub> to LTO results in a strong decrease in the grain boundary resistance of LTO-Li<sub>2</sub>TiO<sub>3</sub> (LTC) composites...

Full description

Bibliographic Details
Main Authors: Anna Kozlova, Nikolai Uvarov, Artem Ulihin
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/17/6079
_version_ 1797494450384011264
author Anna Kozlova
Nikolai Uvarov
Artem Ulihin
author_facet Anna Kozlova
Nikolai Uvarov
Artem Ulihin
author_sort Anna Kozlova
collection DOAJ
description The study demonstrates that the introduction of the electrochemically inactive dielectric additive Li<sub>2</sub>TiO<sub>3</sub> to LTO results in a strong decrease in the grain boundary resistance of LTO-Li<sub>2</sub>TiO<sub>3</sub> (LTC) composites at a low concentration of Li<sub>2</sub>TiO<sub>3</sub>. With the increase in the concentration of Li<sub>2</sub>TiO<sub>3</sub> in LTC composites, the grain boundary resistance goes through a minimum and increases again due to the growth of the insulation layer of small Li<sub>2</sub>TiO<sub>3</sub> particles around LTO grains. For LTO-TiO<sub>2</sub> (LTT) composites, a similar effect was observed, albeit not as strong. It was found that LTC composites at low concentration of Li<sub>2</sub>TiO<sub>3</sub> have unusually high charge–discharge capacity exceeding the theoretical value for pure LTO. This effect is likely to be caused by the occurrence of the electrochemical activity of Li<sub>2</sub>TiO<sub>3</sub> in the vicinity of the interfaces between LTO and Li<sub>2</sub>TiO<sub>3</sub>. The increase in the capacity may be qualitatively described in terms of the model of two-phase composite in which there is the interface layer with a high capacity. Contrasting with LTC composites, in LTT composites, no capacity enhancement was observed, which was likely due to a noticeable difference in crystal structures of LTO and TiO<sub>2</sub> preventing the formation of coherent interfaces.
first_indexed 2024-03-10T01:34:28Z
format Article
id doaj.art-4e3e1af5a5ef4510b83befe71ad33498
institution Directory Open Access Journal
issn 1996-1944
language English
last_indexed 2024-03-10T01:34:28Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Materials
spelling doaj.art-4e3e1af5a5ef4510b83befe71ad334982023-11-23T13:35:11ZengMDPI AGMaterials1996-19442022-09-011517607910.3390/ma15176079Transport and Electrochemical Properties of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-Li<sub>2</sub>TiO<sub>3</sub> and Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-TiO<sub>2</sub> CompositesAnna Kozlova0Nikolai Uvarov1Artem Ulihin2Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Kutateladze Str. 18, 630128 Novosibirsk, RussiaInstitute of Solid State Chemistry and Mechanochemistry, SB RAS, Kutateladze Str. 18, 630128 Novosibirsk, RussiaInstitute of Solid State Chemistry and Mechanochemistry, SB RAS, Kutateladze Str. 18, 630128 Novosibirsk, RussiaThe study demonstrates that the introduction of the electrochemically inactive dielectric additive Li<sub>2</sub>TiO<sub>3</sub> to LTO results in a strong decrease in the grain boundary resistance of LTO-Li<sub>2</sub>TiO<sub>3</sub> (LTC) composites at a low concentration of Li<sub>2</sub>TiO<sub>3</sub>. With the increase in the concentration of Li<sub>2</sub>TiO<sub>3</sub> in LTC composites, the grain boundary resistance goes through a minimum and increases again due to the growth of the insulation layer of small Li<sub>2</sub>TiO<sub>3</sub> particles around LTO grains. For LTO-TiO<sub>2</sub> (LTT) composites, a similar effect was observed, albeit not as strong. It was found that LTC composites at low concentration of Li<sub>2</sub>TiO<sub>3</sub> have unusually high charge–discharge capacity exceeding the theoretical value for pure LTO. This effect is likely to be caused by the occurrence of the electrochemical activity of Li<sub>2</sub>TiO<sub>3</sub> in the vicinity of the interfaces between LTO and Li<sub>2</sub>TiO<sub>3</sub>. The increase in the capacity may be qualitatively described in terms of the model of two-phase composite in which there is the interface layer with a high capacity. Contrasting with LTC composites, in LTT composites, no capacity enhancement was observed, which was likely due to a noticeable difference in crystal structures of LTO and TiO<sub>2</sub> preventing the formation of coherent interfaces.https://www.mdpi.com/1996-1944/15/17/6079Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-Li<sub>2</sub>TiO<sub>3</sub>Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-TiO<sub>2</sub> compositessolid-state synthesisionic conductivitygrain boundary resistanceexcess charge capacity
spellingShingle Anna Kozlova
Nikolai Uvarov
Artem Ulihin
Transport and Electrochemical Properties of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-Li<sub>2</sub>TiO<sub>3</sub> and Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-TiO<sub>2</sub> Composites
Materials
Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-Li<sub>2</sub>TiO<sub>3</sub>
Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-TiO<sub>2</sub> composites
solid-state synthesis
ionic conductivity
grain boundary resistance
excess charge capacity
title Transport and Electrochemical Properties of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-Li<sub>2</sub>TiO<sub>3</sub> and Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-TiO<sub>2</sub> Composites
title_full Transport and Electrochemical Properties of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-Li<sub>2</sub>TiO<sub>3</sub> and Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-TiO<sub>2</sub> Composites
title_fullStr Transport and Electrochemical Properties of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-Li<sub>2</sub>TiO<sub>3</sub> and Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-TiO<sub>2</sub> Composites
title_full_unstemmed Transport and Electrochemical Properties of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-Li<sub>2</sub>TiO<sub>3</sub> and Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-TiO<sub>2</sub> Composites
title_short Transport and Electrochemical Properties of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-Li<sub>2</sub>TiO<sub>3</sub> and Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-TiO<sub>2</sub> Composites
title_sort transport and electrochemical properties of li sub 4 sub ti sub 5 sub o sub 12 sub li sub 2 sub tio sub 3 sub and li sub 4 sub ti sub 5 sub o sub 12 sub tio sub 2 sub composites
topic Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-Li<sub>2</sub>TiO<sub>3</sub>
Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>-TiO<sub>2</sub> composites
solid-state synthesis
ionic conductivity
grain boundary resistance
excess charge capacity
url https://www.mdpi.com/1996-1944/15/17/6079
work_keys_str_mv AT annakozlova transportandelectrochemicalpropertiesoflisub4subtisub5subosub12sublisub2subtiosub3subandlisub4subtisub5subosub12subtiosub2subcomposites
AT nikolaiuvarov transportandelectrochemicalpropertiesoflisub4subtisub5subosub12sublisub2subtiosub3subandlisub4subtisub5subosub12subtiosub2subcomposites
AT artemulihin transportandelectrochemicalpropertiesoflisub4subtisub5subosub12sublisub2subtiosub3subandlisub4subtisub5subosub12subtiosub2subcomposites