Pathways and mechanisms of Late Ordovician (Katian) faunal migrations of Laurentia and Baltica

Late Ordovician strata within the Cincinnati Basin record a mass faunal migration event during the C4 and C5 depositional sequences. The geographic source region for the invaders and the paleoceanographic conditions that facilitated dispersal into the Cincinnati Basin has previously been poorly unde...

Full description

Bibliographic Details
Main Authors: Adriane R. Lam, Alycia L. Stigall
Format: Article
Language:English
Published: Estonian Academy Publishers 2015-02-01
Series:Estonian Journal of Earth Sciences
Subjects:
Online Access:http://www.kirj.ee/public/Estonian_Journal_of_Earth_Sciences/2015/issue_1/earth-2015-1-62-67.pdf
Description
Summary:Late Ordovician strata within the Cincinnati Basin record a mass faunal migration event during the C4 and C5 depositional sequences. The geographic source region for the invaders and the paleoceanographic conditions that facilitated dispersal into the Cincinnati Basin has previously been poorly understood. Using Parsimony Analysis of Endemicity, biogeographic relationships among Laurentian and Baltic basins were analyzed for each of the C1–C5 depositional sequences to identify dispersal paths. The results support multiple dispersal pathways, including three separate dispersal events between Baltica and Laurentia. Within Laurentia, results support dispersal pathways between areas north of the Transcontinental Arch into the western Midcontinent, between the Upper Mississippi Valley into the Cincinnati Basin, and between the peri-cratonic Scoto-Appalachian Basin and the Cincinnati Basin. These results support the hypothesis that invasive taxa entered the Cincinnati Basin via multiple dispersal pathways and that the equatorial Iapetus current facilitated dispersal of organisms from Baltica to Laurentia. Within Laurentia, surface currents and large storms moving from northeast to southwest likely influenced the dispersal of organisms. Larval states were characterized for the Richmondian invaders, and most invaders were found to have had planktotrophic planktic larvae. These self-feeding larvae have high dispersal potential, which – in conjunction with oceanographic and climatic conditions – enabled long-distance dispersal and interbasinal species migrations.
ISSN:1736-4728
1736-7557