Symmetric module and Connes amenability
In this paper we introduce two symmetric variants of amenability, symmetric module amenability and symmetric Connes amenability. We determine symmetric module amenability and symmetric Connes amenability of some concrete Banach algebras. Indeed, it is shown that $ell^1(S)$ is a symmetric $ell^1(E)$...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Maragheh
2017-01-01
|
Series: | Sahand Communications in Mathematical Analysis |
Subjects: | |
Online Access: | http://scma.maragheh.ac.ir/article_21382_4d0846371eaab14fedda80b8067ab743.pdf |
_version_ | 1818391652560011264 |
---|---|
author | Mohammad Hossein Sattari Hamid Shafieasl |
author_facet | Mohammad Hossein Sattari Hamid Shafieasl |
author_sort | Mohammad Hossein Sattari |
collection | DOAJ |
description | In this paper we introduce two symmetric variants of amenability, symmetric module amenability and symmetric Connes amenability. We determine symmetric module amenability and symmetric Connes amenability of some concrete Banach algebras. Indeed, it is shown that $ell^1(S)$ is a symmetric $ell^1(E)$-module amenable if and only if $S$ is amenable, where $S$ is an inverse semigroup with subsemigroup $E(S)$ of idempotents. In symmetric connes amenability, we have proved that $M(G)$ is symmetric connes amenable if and only if $G$ is amenable. |
first_indexed | 2024-12-14T05:16:56Z |
format | Article |
id | doaj.art-4e55933d3be54a5683f34e09780ca987 |
institution | Directory Open Access Journal |
issn | 2322-5807 2423-3900 |
language | English |
last_indexed | 2024-12-14T05:16:56Z |
publishDate | 2017-01-01 |
publisher | University of Maragheh |
record_format | Article |
series | Sahand Communications in Mathematical Analysis |
spelling | doaj.art-4e55933d3be54a5683f34e09780ca9872022-12-21T23:15:48ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002017-01-0151495921382Symmetric module and Connes amenabilityMohammad Hossein Sattari0Hamid Shafieasl1Department of Mathematics, Faculty of Science, Azarbaijan Shahid Madani University, P.O.Box 53751-71379, Tabriz, Iran.Department of Mathematics, Faculty of Science, Azarbaijan Shahid Madani University, P.O.Box 53751-71379, Tabriz, Iran.In this paper we introduce two symmetric variants of amenability, symmetric module amenability and symmetric Connes amenability. We determine symmetric module amenability and symmetric Connes amenability of some concrete Banach algebras. Indeed, it is shown that $ell^1(S)$ is a symmetric $ell^1(E)$-module amenable if and only if $S$ is amenable, where $S$ is an inverse semigroup with subsemigroup $E(S)$ of idempotents. In symmetric connes amenability, we have proved that $M(G)$ is symmetric connes amenable if and only if $G$ is amenable.http://scma.maragheh.ac.ir/article_21382_4d0846371eaab14fedda80b8067ab743.pdfBanach algebrasSymmetric amenabilityModule amenability |
spellingShingle | Mohammad Hossein Sattari Hamid Shafieasl Symmetric module and Connes amenability Sahand Communications in Mathematical Analysis Banach algebras Symmetric amenability Module amenability |
title | Symmetric module and Connes amenability |
title_full | Symmetric module and Connes amenability |
title_fullStr | Symmetric module and Connes amenability |
title_full_unstemmed | Symmetric module and Connes amenability |
title_short | Symmetric module and Connes amenability |
title_sort | symmetric module and connes amenability |
topic | Banach algebras Symmetric amenability Module amenability |
url | http://scma.maragheh.ac.ir/article_21382_4d0846371eaab14fedda80b8067ab743.pdf |
work_keys_str_mv | AT mohammadhosseinsattari symmetricmoduleandconnesamenability AT hamidshafieasl symmetricmoduleandconnesamenability |