Symmetric module and Connes amenability

In this paper we introduce two symmetric variants of amenability, symmetric module amenability and symmetric Connes amenability. We determine symmetric module amenability and symmetric Connes amenability of some concrete Banach algebras. Indeed, it is shown that $ell^1(S)$ is  a symmetric $ell^1(E)$...

Full description

Bibliographic Details
Main Authors: Mohammad Hossein Sattari, Hamid Shafieasl
Format: Article
Language:English
Published: University of Maragheh 2017-01-01
Series:Sahand Communications in Mathematical Analysis
Subjects:
Online Access:http://scma.maragheh.ac.ir/article_21382_4d0846371eaab14fedda80b8067ab743.pdf
_version_ 1818391652560011264
author Mohammad Hossein Sattari
Hamid Shafieasl
author_facet Mohammad Hossein Sattari
Hamid Shafieasl
author_sort Mohammad Hossein Sattari
collection DOAJ
description In this paper we introduce two symmetric variants of amenability, symmetric module amenability and symmetric Connes amenability. We determine symmetric module amenability and symmetric Connes amenability of some concrete Banach algebras. Indeed, it is shown that $ell^1(S)$ is  a symmetric $ell^1(E)$-module amenable if and only if $S$ is amenable, where $S$ is an inverse semigroup with subsemigroup $E(S)$ of idempotents. In symmetric connes amenability, we have proved that $M(G)$ is symmetric connes amenable if and only if $G$ is amenable.
first_indexed 2024-12-14T05:16:56Z
format Article
id doaj.art-4e55933d3be54a5683f34e09780ca987
institution Directory Open Access Journal
issn 2322-5807
2423-3900
language English
last_indexed 2024-12-14T05:16:56Z
publishDate 2017-01-01
publisher University of Maragheh
record_format Article
series Sahand Communications in Mathematical Analysis
spelling doaj.art-4e55933d3be54a5683f34e09780ca9872022-12-21T23:15:48ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002017-01-0151495921382Symmetric module and Connes amenabilityMohammad Hossein Sattari0Hamid Shafieasl1Department of Mathematics, Faculty of Science, Azarbaijan Shahid Madani University, P.O.Box 53751-71379, Tabriz, Iran.Department of Mathematics, Faculty of Science, Azarbaijan Shahid Madani University, P.O.Box 53751-71379, Tabriz, Iran.In this paper we introduce two symmetric variants of amenability, symmetric module amenability and symmetric Connes amenability. We determine symmetric module amenability and symmetric Connes amenability of some concrete Banach algebras. Indeed, it is shown that $ell^1(S)$ is  a symmetric $ell^1(E)$-module amenable if and only if $S$ is amenable, where $S$ is an inverse semigroup with subsemigroup $E(S)$ of idempotents. In symmetric connes amenability, we have proved that $M(G)$ is symmetric connes amenable if and only if $G$ is amenable.http://scma.maragheh.ac.ir/article_21382_4d0846371eaab14fedda80b8067ab743.pdfBanach algebrasSymmetric amenabilityModule amenability
spellingShingle Mohammad Hossein Sattari
Hamid Shafieasl
Symmetric module and Connes amenability
Sahand Communications in Mathematical Analysis
Banach algebras
Symmetric amenability
Module amenability
title Symmetric module and Connes amenability
title_full Symmetric module and Connes amenability
title_fullStr Symmetric module and Connes amenability
title_full_unstemmed Symmetric module and Connes amenability
title_short Symmetric module and Connes amenability
title_sort symmetric module and connes amenability
topic Banach algebras
Symmetric amenability
Module amenability
url http://scma.maragheh.ac.ir/article_21382_4d0846371eaab14fedda80b8067ab743.pdf
work_keys_str_mv AT mohammadhosseinsattari symmetricmoduleandconnesamenability
AT hamidshafieasl symmetricmoduleandconnesamenability