Conceptualization of a Sensory Feedback System in an Anthropomorphic Replacement Hand

(1) Background: This paper presents a conceptual design for an anthropomorphic replacement hand made of silicone that integrates a sensory feedback system. In combination with a motorized orthosis, it allows performing movements and registering information on the flexion and the pressure of the fing...

Full description

Bibliographic Details
Main Authors: Simon Hazubski, Derya Bamerni, Andreas Otte
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Prosthesis
Subjects:
Online Access:https://www.mdpi.com/2673-1592/3/4/37
Description
Summary:(1) Background: This paper presents a conceptual design for an anthropomorphic replacement hand made of silicone that integrates a sensory feedback system. In combination with a motorized orthosis, it allows performing movements and registering information on the flexion and the pressure of the fingers. (2) Methods: To create the replacement hand, a three-dimensional (3D) scanner was used to scan the hand of the test person. With computer-aided design (CAD), a mold was created from the hand, then 3D-printed. Bending and force sensors were attached to the mold before silicone casting to implement the sensory feedback system. To achieve a functional and anthropomorphic appearance of the replacement hand, a material analysis was carried out. In two different test series, the properties of the used silicones were analyzed regarding their mechanical properties and the manufacturing process. (3) Results: Individual fingers and an entire hand with integrated sensors were realized, which demonstrated in several tests that sensory feedback in such an anthropomorphic replacement hand can be realized. Nevertheless, the choice of silicone material remains an open challenge, as there is a trade-off between the hardness of the material and the maximum mechanical force of the orthosis. (4) Conclusion: Apart from manufacturing-related issues, it is possible to cost-effectively create a personalized, anthropomorphic replacement hand, including sensory feedback, by using 3D scanning and 3D printing techniques.
ISSN:2673-1592