On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators

We consider a model of neuron complex formed by a chain of diffusion coupled oscillators. Every oscillator simulates a separate neuron and is given by a singularly perturbed nonlinear differential-difference equation with two delays. Oscillator singularity allows reduction to limit system without sm...

Full description

Bibliographic Details
Main Authors: Y. V. Bogomolov, S. D. GlyzinA, A. Yu. Kolesov
Format: Article
Language:English
Published: Yaroslavl State University 2014-10-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/92
_version_ 1797877942855925760
author Y. V. Bogomolov
S. D. GlyzinA
A. Yu. Kolesov
author_facet Y. V. Bogomolov
S. D. GlyzinA
A. Yu. Kolesov
author_sort Y. V. Bogomolov
collection DOAJ
description We consider a model of neuron complex formed by a chain of diffusion coupled oscillators. Every oscillator simulates a separate neuron and is given by a singularly perturbed nonlinear differential-difference equation with two delays. Oscillator singularity allows reduction to limit system without small parameters but with pulse external action. The statement on correspondence between the resulting system with pulse external action and the original oscillator chain gives a way to demonstrate that under consistent growth of the chain node number and decrease of diffusion coefficient we can obtain in this chain unlimited growth of its coexistent stable periodic orbits (buffer phenomenon). Numerical simulations give the actual dependence of the number of stable orbits on the diffusion parameter value.
first_indexed 2024-04-10T02:24:46Z
format Article
id doaj.art-4e5a2d41cdb34902b9b22be4b50a0594
institution Directory Open Access Journal
issn 1818-1015
2313-5417
language English
last_indexed 2024-04-10T02:24:46Z
publishDate 2014-10-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj.art-4e5a2d41cdb34902b9b22be4b50a05942023-03-13T08:07:32ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172014-10-0121516218010.18255/1818-1015-2014-5-162-18086On the Number of Coexisting Autowaves in the Chain of Coupled OscillatorsY. V. Bogomolov0S. D. GlyzinA1A. Yu. Kolesov2Ярославский государственный университет им. П.Г. ДемидоваЯрославский государственный университет им. П.Г. Демидова; Отдел прикладных сетевых исследований НЦЧ РАНЯрославский государственный университет им. П.Г. ДемидоваWe consider a model of neuron complex formed by a chain of diffusion coupled oscillators. Every oscillator simulates a separate neuron and is given by a singularly perturbed nonlinear differential-difference equation with two delays. Oscillator singularity allows reduction to limit system without small parameters but with pulse external action. The statement on correspondence between the resulting system with pulse external action and the original oscillator chain gives a way to demonstrate that under consistent growth of the chain node number and decrease of diffusion coefficient we can obtain in this chain unlimited growth of its coexistent stable periodic orbits (buffer phenomenon). Numerical simulations give the actual dependence of the number of stable orbits on the diffusion parameter value.https://www.mais-journal.ru/jour/article/view/92дифференциально-разностные уравнениярелаксационный циклавтоволныустойчивостьбуферностьbursting-эффект
spellingShingle Y. V. Bogomolov
S. D. GlyzinA
A. Yu. Kolesov
On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators
Моделирование и анализ информационных систем
дифференциально-разностные уравнения
релаксационный цикл
автоволны
устойчивость
буферность
bursting-эффект
title On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators
title_full On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators
title_fullStr On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators
title_full_unstemmed On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators
title_short On the Number of Coexisting Autowaves in the Chain of Coupled Oscillators
title_sort on the number of coexisting autowaves in the chain of coupled oscillators
topic дифференциально-разностные уравнения
релаксационный цикл
автоволны
устойчивость
буферность
bursting-эффект
url https://www.mais-journal.ru/jour/article/view/92
work_keys_str_mv AT yvbogomolov onthenumberofcoexistingautowavesinthechainofcoupledoscillators
AT sdglyzina onthenumberofcoexistingautowavesinthechainofcoupledoscillators
AT ayukolesov onthenumberofcoexistingautowavesinthechainofcoupledoscillators