The topology of the external activity complex of a matroid
We prove that the external activity complex Act<(M) of a matroid is shellable. In fact, we show that every linear extension of Las Vergnas's external/internal order <ext/int on M provides a shelling of Act<(M). We also show that every linear extension of Las Vergnas's internal ord...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Discrete Mathematics & Theoretical Computer Science
2020-04-01
|
Series: | Discrete Mathematics & Theoretical Computer Science |
Subjects: | |
Online Access: | https://dmtcs.episciences.org/6355/pdf |
Summary: | We prove that the external activity complex Act<(M) of a matroid is shellable. In fact, we show that every linear extension of Las Vergnas's external/internal order <ext/int on M provides a shelling of Act<(M). We also show that every linear extension of Las Vergnas's internal order <int on M provides a shelling of the independence complex IN(M). As a corollary, Act<(M) and M have the same h-vector. We prove that, after removing its cone points, the external activity complex is contractible if M contains U3,1 as a minor, and a sphere otherwise. |
---|---|
ISSN: | 1365-8050 |