Neuroplasticity-driven timing modulations revealed by ultrafast functional magnetic resonance imaging

Detecting neuroplasticity in global brain circuits in vivo is key for understanding myriad processes such as memory, learning, and recovery from injury. Functional Magnetic Resonance Imaging (fMRI) is instrumental for such in vivo mappings, yet it typically relies on mapping changes in spatial exten...

Full description

Bibliographic Details
Main Authors: Rita Gil, Francisca F. Fernandes, Noam Shemesh
Format: Article
Language:English
Published: Elsevier 2021-01-01
Series:NeuroImage
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1053811920309319
Description
Summary:Detecting neuroplasticity in global brain circuits in vivo is key for understanding myriad processes such as memory, learning, and recovery from injury. Functional Magnetic Resonance Imaging (fMRI) is instrumental for such in vivo mappings, yet it typically relies on mapping changes in spatial extent of activation or via signal amplitude modulations, whose interpretation can be highly ambiguous. Importantly, a central aspect of neuroplasticity involves modulation of neural activity timing properties. We thus hypothesized that this temporal dimension could serve as a new marker for neuroplasticity. To detect fMRI signals more associated with the underlying neural dynamics, we developed an ultrafast fMRI (ufMRI) approach facilitating high spatiotemporal sensitivity and resolution in distributed neural pathways. When neuroplasticity was induced in the mouse visual pathway via dark rearing, ufMRI indeed mapped temporal modulations in the entire visual pathway. Our findings therefore suggest a new dimension for exploring neuroplasticity in vivo.
ISSN:1095-9572