Extent of linkage disequilibrium and effective population size of the Landrace population in Korea

Objective The genetic diversity of the Landrace population, a representative maternal pig breed in Korea, is important for genetic improvement. Previously, the effective population size (Ne) has been used to infer the genetic diversity of a population of interest. In this study, we aimed to use sing...

Full description

Bibliographic Details
Main Authors: Donghyun Shin, Sung-Hoon Kim, Joowan Park, Hak-Kyo Lee, Ki-Duk Song
Format: Article
Language:English
Published: Asian-Australasian Association of Animal Production Societies 2018-08-01
Series:Asian-Australasian Journal of Animal Sciences
Subjects:
Online Access:http://www.ajas.info/upload/pdf/ajas-31-8-1078.pdf
Description
Summary:Objective The genetic diversity of the Landrace population, a representative maternal pig breed in Korea, is important for genetic improvement. Previously, the effective population size (Ne) has been used to infer the genetic diversity of a population of interest. In this study, we aimed to use single nucleotide polymorphism (SNP) data to characterize linkage disequilibrium (LD) and the Ne of the Korean Landrace population. Methods We genotyped 1,128 Landrace individuals from three representative Korean major grand-grand-parent (GGP) farms using the Illumina PorcineSNP60 version2 BeadChip, which covers >61,565 SNPs located across all autosomes and mitochondrial and sex chromosomes. We estimated the expected LD and current Ne, as well as ancestral Ne. Results In the Korean Landrace population, the mean LD (r2) of 3.698 million SNP pairs was 0.135±0.204. The mean r2 decreased slowly with as the distance between SNPs increased, and remained constant beyond 3 Mb. According to the r2 calculations, 8,085 of 3.698 million SNP pairs were in complete LD. The current Ne (±standard deviation) of the Korean Landrace population is approximately 92.27 [79.46; 105.07] individuals. The ancestral Ne exhibited a slow and steady decline from 186.61 to 92.27 over the past 100 generations. Additionally, we observed more a rapid Ne decrease from the past 20 to 10 generations ago, compared with other intervals. Conclusion We have presented an overview of LD and the current and ancestral Ne values in the Korean Landrace population. The mean LD and current Ne for the Korean Landrace population confirm the genetic diversity and reflect the history of this pig population in Korea.
ISSN:1011-2367
1976-5517