Certification of the efficient random number generation technique based on single‐photon detector arrays and time‐to‐digital converters

Abstract True random number generators (TRNGs) allow the generation of true random bit sequences, guaranteeing the unpredictability and perfect balancing of the generated values. TRNGs can be realised from the sampling of quantum phenomena, for instance, the detection of single photons. Here, a rece...

Full description

Bibliographic Details
Main Authors: Andrea Stanco, Davide G. Marangon, Giuseppe Vallone, Samuel Burri, Edoardo Charbon, Paolo Villoresi
Format: Article
Language:English
Published: Wiley 2021-09-01
Series:IET Quantum Communication
Subjects:
Online Access:https://doi.org/10.1049/qtc2.12018
_version_ 1811220209009164288
author Andrea Stanco
Davide G. Marangon
Giuseppe Vallone
Samuel Burri
Edoardo Charbon
Paolo Villoresi
author_facet Andrea Stanco
Davide G. Marangon
Giuseppe Vallone
Samuel Burri
Edoardo Charbon
Paolo Villoresi
author_sort Andrea Stanco
collection DOAJ
description Abstract True random number generators (TRNGs) allow the generation of true random bit sequences, guaranteeing the unpredictability and perfect balancing of the generated values. TRNGs can be realised from the sampling of quantum phenomena, for instance, the detection of single photons. Here, a recently proposed technique, which implements a quantum random number generator (QRNG) out of a device that was realised for a different scope, is further analysed and certified [1]. The combination of a CMOS single‐photon avalanche diode (SPAD) array, a high‐resolution time‐to‐digital converter (TDC) implemented on a field programmable gate array (FPGA), the exploitation of a single‐photon temporal degree of freedom, and an unbiased procedure provided by H. Zhou and J. Bruck [2, 3] allows the generation of true random bits with a high bitrate in a compact and easy‐to‐calibrate device. Indeed, the use of the ‘Zhou–Bruck’ method allows the removal of any correlation from the binary representation of decimal data. This perfectly fits with the usage of a device with non‐idealities like SPAD's afterpulses, pixel cross‐correlation, and time‐to‐digital converter non‐uniform conversion. In this work, an in‐depth analysis and certification of the technique presented in [1] is provided by processing the data with the NIST suite tests in order to prove the effectiveness and validity of this approach.
first_indexed 2024-04-12T07:37:51Z
format Article
id doaj.art-4ea5420ee8fd402cbbc5853e1b2cf6b4
institution Directory Open Access Journal
issn 2632-8925
language English
last_indexed 2024-04-12T07:37:51Z
publishDate 2021-09-01
publisher Wiley
record_format Article
series IET Quantum Communication
spelling doaj.art-4ea5420ee8fd402cbbc5853e1b2cf6b42022-12-22T03:41:53ZengWileyIET Quantum Communication2632-89252021-09-0123747910.1049/qtc2.12018Certification of the efficient random number generation technique based on single‐photon detector arrays and time‐to‐digital convertersAndrea Stanco0Davide G. Marangon1Giuseppe Vallone2Samuel Burri3Edoardo Charbon4Paolo Villoresi5Dipartimento di Ingegneria dell’Informazione, Università Degli Studi di Padova Padova ItalyDipartimento di Ingegneria dell’Informazione, Università Degli Studi di Padova Padova ItalyDipartimento di Ingegneria dell’Informazione, Università Degli Studi di Padova Padova ItalyEcole Polytechnique Fédérale de Lausanne (EPFL) Neuchâtel SwitzerlandEcole Polytechnique Fédérale de Lausanne (EPFL) Neuchâtel SwitzerlandDipartimento di Ingegneria dell’Informazione, Università Degli Studi di Padova Padova ItalyAbstract True random number generators (TRNGs) allow the generation of true random bit sequences, guaranteeing the unpredictability and perfect balancing of the generated values. TRNGs can be realised from the sampling of quantum phenomena, for instance, the detection of single photons. Here, a recently proposed technique, which implements a quantum random number generator (QRNG) out of a device that was realised for a different scope, is further analysed and certified [1]. The combination of a CMOS single‐photon avalanche diode (SPAD) array, a high‐resolution time‐to‐digital converter (TDC) implemented on a field programmable gate array (FPGA), the exploitation of a single‐photon temporal degree of freedom, and an unbiased procedure provided by H. Zhou and J. Bruck [2, 3] allows the generation of true random bits with a high bitrate in a compact and easy‐to‐calibrate device. Indeed, the use of the ‘Zhou–Bruck’ method allows the removal of any correlation from the binary representation of decimal data. This perfectly fits with the usage of a device with non‐idealities like SPAD's afterpulses, pixel cross‐correlation, and time‐to‐digital converter non‐uniform conversion. In this work, an in‐depth analysis and certification of the technique presented in [1] is provided by processing the data with the NIST suite tests in order to prove the effectiveness and validity of this approach.https://doi.org/10.1049/qtc2.12018avalanche photodiodescalibrationcertificationCMOS integrated circuitsfield programmable gate arraysintegrated optics
spellingShingle Andrea Stanco
Davide G. Marangon
Giuseppe Vallone
Samuel Burri
Edoardo Charbon
Paolo Villoresi
Certification of the efficient random number generation technique based on single‐photon detector arrays and time‐to‐digital converters
IET Quantum Communication
avalanche photodiodes
calibration
certification
CMOS integrated circuits
field programmable gate arrays
integrated optics
title Certification of the efficient random number generation technique based on single‐photon detector arrays and time‐to‐digital converters
title_full Certification of the efficient random number generation technique based on single‐photon detector arrays and time‐to‐digital converters
title_fullStr Certification of the efficient random number generation technique based on single‐photon detector arrays and time‐to‐digital converters
title_full_unstemmed Certification of the efficient random number generation technique based on single‐photon detector arrays and time‐to‐digital converters
title_short Certification of the efficient random number generation technique based on single‐photon detector arrays and time‐to‐digital converters
title_sort certification of the efficient random number generation technique based on single photon detector arrays and time to digital converters
topic avalanche photodiodes
calibration
certification
CMOS integrated circuits
field programmable gate arrays
integrated optics
url https://doi.org/10.1049/qtc2.12018
work_keys_str_mv AT andreastanco certificationoftheefficientrandomnumbergenerationtechniquebasedonsinglephotondetectorarraysandtimetodigitalconverters
AT davidegmarangon certificationoftheefficientrandomnumbergenerationtechniquebasedonsinglephotondetectorarraysandtimetodigitalconverters
AT giuseppevallone certificationoftheefficientrandomnumbergenerationtechniquebasedonsinglephotondetectorarraysandtimetodigitalconverters
AT samuelburri certificationoftheefficientrandomnumbergenerationtechniquebasedonsinglephotondetectorarraysandtimetodigitalconverters
AT edoardocharbon certificationoftheefficientrandomnumbergenerationtechniquebasedonsinglephotondetectorarraysandtimetodigitalconverters
AT paolovilloresi certificationoftheefficientrandomnumbergenerationtechniquebasedonsinglephotondetectorarraysandtimetodigitalconverters