Summary: | Extremum seeking control can search the optimal slip rate of the antilock braking system of a vehicle through a high-frequency sinusoidal excitation signal. However, because of the bandwidth limitation of the braking actuator, the search speed of the optimal slip rate decreases and the stability of the extremum seeking control system becomes worse. To search and control the optimal slip rate, an improved nonlinear predictive control strategy enhanced by fractional order extremum seeking control is proposed for the vehicle antilock braking system. First, the nonlinear dynamic model of the braking system is established. Then, nonlinear prediction control is designed with the prediction of the slip rate response based on the nonlinear model to achieve slip rate control. Using fractional order calculus, a fractional extremum seeking controller is proposed to search for the optimal slip rate. Nonlinear predictive control integrated with fractional extremum seeking control is proposed to achieve the function of vehicle antilock braking. Finally, the effectiveness of the proposed method is verified by simulating the vehicle antilock braking system under different road conditions. The result shows that by considering the actuator available bandwidth, the proposed fractional order extremum seeking control can improve the search speed of the optimal slip rate compared with traditional integer order extremum seeking control. The proposed integrated controller achieves wheel slip rate optimal control regardless of the road conditions.
|