Machine learning Post-Minkowskian integrals

Abstract We study a neural network framework for the numerical evaluation of Feynman loop integrals that are fundamental building blocks for perturbative computations of physical observables in gauge and gravity theories. We show that such a machine learning approach improves the convergence of the...

Full description

Bibliographic Details
Main Authors: Ryusuke Jinno, Gregor Kälin, Zhengwen Liu, Henrique Rubira
Format: Article
Language:English
Published: SpringerOpen 2023-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP07(2023)181
_version_ 1797647471416967168
author Ryusuke Jinno
Gregor Kälin
Zhengwen Liu
Henrique Rubira
author_facet Ryusuke Jinno
Gregor Kälin
Zhengwen Liu
Henrique Rubira
author_sort Ryusuke Jinno
collection DOAJ
description Abstract We study a neural network framework for the numerical evaluation of Feynman loop integrals that are fundamental building blocks for perturbative computations of physical observables in gauge and gravity theories. We show that such a machine learning approach improves the convergence of the Monte Carlo algorithm for high-precision evaluation of multi-dimensional integrals compared to traditional algorithms. In particular, we use a neural network to improve the importance sampling. For a set of representative integrals appearing in the computation of the conservative dynamics for a compact binary system in General Relativity, we perform a quantitative comparison between the Monte Carlo integrators VEGAS and i-flow, an integrator based on neural network sampling.
first_indexed 2024-03-11T15:18:01Z
format Article
id doaj.art-4ea9c703dd2f431e9e595dacfbf39d53
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-03-11T15:18:01Z
publishDate 2023-07-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-4ea9c703dd2f431e9e595dacfbf39d532023-10-29T12:06:29ZengSpringerOpenJournal of High Energy Physics1029-84792023-07-012023714510.1007/JHEP07(2023)181Machine learning Post-Minkowskian integralsRyusuke Jinno0Gregor Kälin1Zhengwen Liu2Henrique Rubira3Instituto de Física Teórica UAM/CSICDeutsches Elektronen-Synchrotron DESYDeutsches Elektronen-Synchrotron DESYDeutsches Elektronen-Synchrotron DESYAbstract We study a neural network framework for the numerical evaluation of Feynman loop integrals that are fundamental building blocks for perturbative computations of physical observables in gauge and gravity theories. We show that such a machine learning approach improves the convergence of the Monte Carlo algorithm for high-precision evaluation of multi-dimensional integrals compared to traditional algorithms. In particular, we use a neural network to improve the importance sampling. For a set of representative integrals appearing in the computation of the conservative dynamics for a compact binary system in General Relativity, we perform a quantitative comparison between the Monte Carlo integrators VEGAS and i-flow, an integrator based on neural network sampling.https://doi.org/10.1007/JHEP07(2023)181Scattering AmplitudesClassical Theories of GravityEffective Field Theories
spellingShingle Ryusuke Jinno
Gregor Kälin
Zhengwen Liu
Henrique Rubira
Machine learning Post-Minkowskian integrals
Journal of High Energy Physics
Scattering Amplitudes
Classical Theories of Gravity
Effective Field Theories
title Machine learning Post-Minkowskian integrals
title_full Machine learning Post-Minkowskian integrals
title_fullStr Machine learning Post-Minkowskian integrals
title_full_unstemmed Machine learning Post-Minkowskian integrals
title_short Machine learning Post-Minkowskian integrals
title_sort machine learning post minkowskian integrals
topic Scattering Amplitudes
Classical Theories of Gravity
Effective Field Theories
url https://doi.org/10.1007/JHEP07(2023)181
work_keys_str_mv AT ryusukejinno machinelearningpostminkowskianintegrals
AT gregorkalin machinelearningpostminkowskianintegrals
AT zhengwenliu machinelearningpostminkowskianintegrals
AT henriquerubira machinelearningpostminkowskianintegrals