Fluorene-9-bisphenol affects the terminal differentiation of mouse embryonic bodies
Fluorene-9-bisphenol (BHPF) has recently attracted interest as it is increasingly used in industrial settings as a substitute for Bisphenol A (BPA). However, the effects of BHPF exposure on embryonic stem cell (ESC) self-renewal, pluripotency, and differentiation remain poorly understood. This study...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-01-01
|
Series: | Current Research in Toxicology |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2666027X23000312 |
_version_ | 1797397541833146368 |
---|---|
author | Aidan J. McLaughlin Anthony I. Kaniski Darena I. Matti Nicodemus C. Monear Jessica L. Tischler Besa Xhabija |
author_facet | Aidan J. McLaughlin Anthony I. Kaniski Darena I. Matti Nicodemus C. Monear Jessica L. Tischler Besa Xhabija |
author_sort | Aidan J. McLaughlin |
collection | DOAJ |
description | Fluorene-9-bisphenol (BHPF) has recently attracted interest as it is increasingly used in industrial settings as a substitute for Bisphenol A (BPA). However, the effects of BHPF exposure on embryonic stem cell (ESC) self-renewal, pluripotency, and differentiation remain poorly understood. This study investigates the impacts of BHPF on mouse embryonic stem cells (mESCs) and embryonic bodies (EBs). Our results reveal that BHPF exposure leads to a morphological shift in mESCs, reducing the percentage of dome-shaped colonies and indicating loss of self-renewal and pluripotency. BHPF exposure also appeared to affect the early stages of EB formation and their growth dynamics, with a reduction in EB numbers and an increase in their size. Subsequent gene expression analysis revealed that BHPF exposure led to increased expression of the inflammatory gene Il6, indicating a potential stress response.Furthermore, BHPF affected the terminal differentiation pathway, modulating the expression of 16 genes associated with distinct cell types, including lymphatic endothelium, keratinocyte epithelium, pancreatic beta cells, macrophages, monocytes, T-cells, neurons, retinal ganglion cells, nephrons proximal tubule cells, and cardiomyocytes. These findings offer insights into the impact of BHPF on ESC biology and suggest potential implications for developmental and neurodegenerative disorders. Future work should focus on elucidating the underlying mechanisms of BHPF-mediated effects on stem cell function. This may offer new perspectives for understanding the health impacts of environmental exposure to BHPF. |
first_indexed | 2024-03-09T01:11:33Z |
format | Article |
id | doaj.art-4eacd36f3cb64990a11ab863327f1a34 |
institution | Directory Open Access Journal |
issn | 2666-027X |
language | English |
last_indexed | 2024-03-09T01:11:33Z |
publishDate | 2023-01-01 |
publisher | Elsevier |
record_format | Article |
series | Current Research in Toxicology |
spelling | doaj.art-4eacd36f3cb64990a11ab863327f1a342023-12-11T04:17:17ZengElsevierCurrent Research in Toxicology2666-027X2023-01-015100133Fluorene-9-bisphenol affects the terminal differentiation of mouse embryonic bodiesAidan J. McLaughlin0Anthony I. Kaniski1Darena I. Matti2Nicodemus C. Monear3Jessica L. Tischler4Besa Xhabija5College of Arts Sciences and Letters, Department of Natural Science, University of Michigan-Dearborn, Dearborn, MI 48128, United StatesCollege of Arts Sciences and Letters, Department of Natural Science, University of Michigan-Dearborn, Dearborn, MI 48128, United StatesCollege of Arts Sciences and Letters, Department of Natural Science, University of Michigan-Dearborn, Dearborn, MI 48128, United StatesCollege of Arts Sciences, Department of Natural Science, University of Michigan-Flint, Flint, MI, United StatesCollege of Arts Sciences, Department of Natural Science, University of Michigan-Flint, Flint, MI, United StatesCollege of Arts Sciences and Letters, Department of Natural Science, University of Michigan-Dearborn, Dearborn, MI 48128, United States; Corresponding author.Fluorene-9-bisphenol (BHPF) has recently attracted interest as it is increasingly used in industrial settings as a substitute for Bisphenol A (BPA). However, the effects of BHPF exposure on embryonic stem cell (ESC) self-renewal, pluripotency, and differentiation remain poorly understood. This study investigates the impacts of BHPF on mouse embryonic stem cells (mESCs) and embryonic bodies (EBs). Our results reveal that BHPF exposure leads to a morphological shift in mESCs, reducing the percentage of dome-shaped colonies and indicating loss of self-renewal and pluripotency. BHPF exposure also appeared to affect the early stages of EB formation and their growth dynamics, with a reduction in EB numbers and an increase in their size. Subsequent gene expression analysis revealed that BHPF exposure led to increased expression of the inflammatory gene Il6, indicating a potential stress response.Furthermore, BHPF affected the terminal differentiation pathway, modulating the expression of 16 genes associated with distinct cell types, including lymphatic endothelium, keratinocyte epithelium, pancreatic beta cells, macrophages, monocytes, T-cells, neurons, retinal ganglion cells, nephrons proximal tubule cells, and cardiomyocytes. These findings offer insights into the impact of BHPF on ESC biology and suggest potential implications for developmental and neurodegenerative disorders. Future work should focus on elucidating the underlying mechanisms of BHPF-mediated effects on stem cell function. This may offer new perspectives for understanding the health impacts of environmental exposure to BHPF.http://www.sciencedirect.com/science/article/pii/S2666027X23000312Fluorene-9-bisphenolBHPFMouse embryonic stem cellsTerminal differentiation |
spellingShingle | Aidan J. McLaughlin Anthony I. Kaniski Darena I. Matti Nicodemus C. Monear Jessica L. Tischler Besa Xhabija Fluorene-9-bisphenol affects the terminal differentiation of mouse embryonic bodies Current Research in Toxicology Fluorene-9-bisphenol BHPF Mouse embryonic stem cells Terminal differentiation |
title | Fluorene-9-bisphenol affects the terminal differentiation of mouse embryonic bodies |
title_full | Fluorene-9-bisphenol affects the terminal differentiation of mouse embryonic bodies |
title_fullStr | Fluorene-9-bisphenol affects the terminal differentiation of mouse embryonic bodies |
title_full_unstemmed | Fluorene-9-bisphenol affects the terminal differentiation of mouse embryonic bodies |
title_short | Fluorene-9-bisphenol affects the terminal differentiation of mouse embryonic bodies |
title_sort | fluorene 9 bisphenol affects the terminal differentiation of mouse embryonic bodies |
topic | Fluorene-9-bisphenol BHPF Mouse embryonic stem cells Terminal differentiation |
url | http://www.sciencedirect.com/science/article/pii/S2666027X23000312 |
work_keys_str_mv | AT aidanjmclaughlin fluorene9bisphenolaffectstheterminaldifferentiationofmouseembryonicbodies AT anthonyikaniski fluorene9bisphenolaffectstheterminaldifferentiationofmouseembryonicbodies AT darenaimatti fluorene9bisphenolaffectstheterminaldifferentiationofmouseembryonicbodies AT nicodemuscmonear fluorene9bisphenolaffectstheterminaldifferentiationofmouseembryonicbodies AT jessicaltischler fluorene9bisphenolaffectstheterminaldifferentiationofmouseembryonicbodies AT besaxhabija fluorene9bisphenolaffectstheterminaldifferentiationofmouseembryonicbodies |