Codes and methods improvements for safety assessment and LTO: varied approaches
Nuclear safety has always been at the heart of the concerns of nuclear power plant operators and developers, as well as of various nuclear research organizations and regulatory authorities. Over the last decades, all these nuclear actors have developed and integrated a large number of calculation co...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2023-01-01
|
Series: | EPJ Nuclear Sciences & Technologies |
Online Access: | https://www.epj-n.org/articles/epjn/full_html/2023/01/epjn220011/epjn220011.html |
_version_ | 1797807639334223872 |
---|---|
author | Cagnac Albannie Verrier Denis Pištora Vladislav |
author_facet | Cagnac Albannie Verrier Denis Pištora Vladislav |
author_sort | Cagnac Albannie |
collection | DOAJ |
description | Nuclear safety has always been at the heart of the concerns of nuclear power plant operators and developers, as well as of various nuclear research organizations and regulatory authorities. Over the last decades, all these nuclear actors have developed and integrated a large number of calculation codes and other tools into their safety work. From the system approach to the local understanding of a phenomenon on a given component, from neutronics to operation optimization for long-term operation, these methods and codes have been constantly evolving since their appearance, in order to be able to integrate new plant designs and components, to improve the results of modeling physical phenomena or quantify and thus reduce the uncertainties on these results. Currently, several H2020 Euratom projects are working on the improvement of these codes and methods. This article will focus on three of these projects: CAMIVVER (Codes And Methods Improvements for VVER comprehensive safety assessment), APAL (Advanced PTS Analysis for LTO), and sCO2-4-NPP (innovative SCO2-based heat removal technology for an increased level of safety of Nuclear Power Plants) in order to illustrate our thinking on the improvement of calculation frameworks. First, we will present the work and the approach adopted with regard to the different calculation codes and methods used in each of these three projects. We will then conclude with an overall analysis of these three approaches, highlighting the difficulties and successes of these three projects, and identifying areas of work for the general improvement of the calculation codes. |
first_indexed | 2024-03-13T06:25:39Z |
format | Article |
id | doaj.art-4ec1ab88dd704fd1aff336bde32a6a2e |
institution | Directory Open Access Journal |
issn | 2491-9292 |
language | English |
last_indexed | 2024-03-13T06:25:39Z |
publishDate | 2023-01-01 |
publisher | EDP Sciences |
record_format | Article |
series | EPJ Nuclear Sciences & Technologies |
spelling | doaj.art-4ec1ab88dd704fd1aff336bde32a6a2e2023-06-09T09:20:33ZengEDP SciencesEPJ Nuclear Sciences & Technologies2491-92922023-01-0192010.1051/epjn/2023001epjn220011Codes and methods improvements for safety assessment and LTO: varied approachesCagnac Albannie0Verrier Denis1Pištora Vladislav2EDF – R&DFRAMATOMEÚJV Řež, a. s.Nuclear safety has always been at the heart of the concerns of nuclear power plant operators and developers, as well as of various nuclear research organizations and regulatory authorities. Over the last decades, all these nuclear actors have developed and integrated a large number of calculation codes and other tools into their safety work. From the system approach to the local understanding of a phenomenon on a given component, from neutronics to operation optimization for long-term operation, these methods and codes have been constantly evolving since their appearance, in order to be able to integrate new plant designs and components, to improve the results of modeling physical phenomena or quantify and thus reduce the uncertainties on these results. Currently, several H2020 Euratom projects are working on the improvement of these codes and methods. This article will focus on three of these projects: CAMIVVER (Codes And Methods Improvements for VVER comprehensive safety assessment), APAL (Advanced PTS Analysis for LTO), and sCO2-4-NPP (innovative SCO2-based heat removal technology for an increased level of safety of Nuclear Power Plants) in order to illustrate our thinking on the improvement of calculation frameworks. First, we will present the work and the approach adopted with regard to the different calculation codes and methods used in each of these three projects. We will then conclude with an overall analysis of these three approaches, highlighting the difficulties and successes of these three projects, and identifying areas of work for the general improvement of the calculation codes.https://www.epj-n.org/articles/epjn/full_html/2023/01/epjn220011/epjn220011.html |
spellingShingle | Cagnac Albannie Verrier Denis Pištora Vladislav Codes and methods improvements for safety assessment and LTO: varied approaches EPJ Nuclear Sciences & Technologies |
title | Codes and methods improvements for safety assessment and LTO: varied approaches |
title_full | Codes and methods improvements for safety assessment and LTO: varied approaches |
title_fullStr | Codes and methods improvements for safety assessment and LTO: varied approaches |
title_full_unstemmed | Codes and methods improvements for safety assessment and LTO: varied approaches |
title_short | Codes and methods improvements for safety assessment and LTO: varied approaches |
title_sort | codes and methods improvements for safety assessment and lto varied approaches |
url | https://www.epj-n.org/articles/epjn/full_html/2023/01/epjn220011/epjn220011.html |
work_keys_str_mv | AT cagnacalbannie codesandmethodsimprovementsforsafetyassessmentandltovariedapproaches AT verrierdenis codesandmethodsimprovementsforsafetyassessmentandltovariedapproaches AT pistoravladislav codesandmethodsimprovementsforsafetyassessmentandltovariedapproaches |