Pluripotency and differentiation of embryonic stem cells

Mouse embryonic stem (ES) cells derive from the inner cell mass of an early embryo called blastocyst, making them promising resource for regenerative medicine. They possess two unique properties: self-renewal and pluripotency. Different ways can be used to assess which extracellular signal and facto...

Full description

Bibliographic Details
Main Authors: Liu Yinyin, Zhao Haibo, Liang Liang, Fan Peilei, Zhao Yujia, Feng Jinling, Zhang Ying, Gao Yang, Shen Zhengsheng
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/45/e3sconf_iceeb2020_04034.pdf
Description
Summary:Mouse embryonic stem (ES) cells derive from the inner cell mass of an early embryo called blastocyst, making them promising resource for regenerative medicine. They possess two unique properties: self-renewal and pluripotency. Different ways can be used to assess which extracellular signal and factor inside ES cells has an impact on the pluripotency of ES cells. Nowadays, many extracellular signals and transcription factors have been identified, such as extracellular signals like LIF and transcription factors like Oct4. Studying the mechanism and function of these factors offers great insight and advance our understanding of pluripotency and self-renewal and thus shed light on regenerative medicine.
ISSN:2267-1242