A high‐throughput microfluidic mechanoporation platform to enable intracellular delivery of cyclic peptides in cell‐based assays

Abstract Cyclic peptides are poised to target historically difficult to drug intracellular protein–protein interactions, however, their general cell impermeability poses a challenge for characterizing function. Recent advances in microfluidics have enabled permeabilization of the cytoplasmic membran...

Full description

Bibliographic Details
Main Authors: Stephen H. Kasper, Stephanie Otten, Brian Squadroni, Cionna Orr‐Terry, Yi Kuang, Lily Mussallem, Lan Ge, Lin Yan, Srinivasaraghavan Kannan, Chandra S. Verma, Christopher J. Brown, Charles W. Johannes, David P. Lane, Arun Chandramohan, Anthony W. Partridge, Lee R. Roberts, Hubert Josien, Alex G. Therien, Erik C. Hett, Bonnie J. Howell, Andrea Peier, Xi Ai, Jason Cassaday
Format: Article
Language:English
Published: Wiley 2023-09-01
Series:Bioengineering & Translational Medicine
Subjects:
Online Access:https://doi.org/10.1002/btm2.10542
_version_ 1827821902217871360
author Stephen H. Kasper
Stephanie Otten
Brian Squadroni
Cionna Orr‐Terry
Yi Kuang
Lily Mussallem
Lan Ge
Lin Yan
Srinivasaraghavan Kannan
Chandra S. Verma
Christopher J. Brown
Charles W. Johannes
David P. Lane
Arun Chandramohan
Anthony W. Partridge
Lee R. Roberts
Hubert Josien
Alex G. Therien
Erik C. Hett
Bonnie J. Howell
Andrea Peier
Xi Ai
Jason Cassaday
author_facet Stephen H. Kasper
Stephanie Otten
Brian Squadroni
Cionna Orr‐Terry
Yi Kuang
Lily Mussallem
Lan Ge
Lin Yan
Srinivasaraghavan Kannan
Chandra S. Verma
Christopher J. Brown
Charles W. Johannes
David P. Lane
Arun Chandramohan
Anthony W. Partridge
Lee R. Roberts
Hubert Josien
Alex G. Therien
Erik C. Hett
Bonnie J. Howell
Andrea Peier
Xi Ai
Jason Cassaday
author_sort Stephen H. Kasper
collection DOAJ
description Abstract Cyclic peptides are poised to target historically difficult to drug intracellular protein–protein interactions, however, their general cell impermeability poses a challenge for characterizing function. Recent advances in microfluidics have enabled permeabilization of the cytoplasmic membrane by physical cell deformation (i.e., mechanoporation), resulting in intracellular delivery of impermeable macromolecules in vector‐ and electrophoretic‐free approaches. However, the number of payloads (e.g., peptides) and/or concentrations delivered via microfluidic mechanoporation is limited by having to pre‐mix cells and payloads, a manually intensive process. In this work, we show that cells are momentarily permeable (t1/2 = 1.1–2.8 min) after microfluidic vortex shedding (μVS) and that lower molecular weight macromolecules can be cytosolically delivered upon immediate exposure after cells are processed/permeabilized. To increase the ability to screen peptides, we built a system, dispensing‐microfluidic vortex shedding (DμVS), that integrates a μVS chip with inline microplate‐based dispensing. To do so, we synced an electronic pressure regulator, flow sensor, on/off dispense valve, and an x‐y motion platform in a software‐driven feedback loop. Using this system, we were able to deliver low microliter‐scale volumes of transiently mechanoporated cells to hundreds of wells on microtiter plates in just several minutes (e.g., 96‐well plate filled in <2.5 min). We validated the delivery of an impermeable peptide directed at MDM2, a negative regulator of the tumor suppressor p53, using a click chemistry‐ and NanoBRET‐based cell permeability assay in 96‐well format, with robust delivery across the full plate. Furthermore, we demonstrated that DμVS could be used to identify functional, low micromolar, cellular activity of otherwise cell‐inactive MDM2‐binding peptides using a p53 reporter cell assay in 96‐ and 384‐well format. Overall, DμVS can be combined with downstream cell assays to investigate intracellular target engagement in a high‐throughput manner, both for improving structure–activity relationship efforts and for early proof‐of‐biology of non‐optimized peptide (or potentially other macromolecular) tools.
first_indexed 2024-03-12T01:51:11Z
format Article
id doaj.art-4ede5586001347c2a4d447e4b2a014ec
institution Directory Open Access Journal
issn 2380-6761
language English
last_indexed 2024-03-12T01:51:11Z
publishDate 2023-09-01
publisher Wiley
record_format Article
series Bioengineering & Translational Medicine
spelling doaj.art-4ede5586001347c2a4d447e4b2a014ec2023-09-08T13:29:53ZengWileyBioengineering & Translational Medicine2380-67612023-09-0185n/an/a10.1002/btm2.10542A high‐throughput microfluidic mechanoporation platform to enable intracellular delivery of cyclic peptides in cell‐based assaysStephen H. Kasper0Stephanie Otten1Brian Squadroni2Cionna Orr‐Terry3Yi Kuang4Lily Mussallem5Lan Ge6Lin Yan7Srinivasaraghavan Kannan8Chandra S. Verma9Christopher J. Brown10Charles W. Johannes11David P. Lane12Arun Chandramohan13Anthony W. Partridge14Lee R. Roberts15Hubert Josien16Alex G. Therien17Erik C. Hett18Bonnie J. Howell19Andrea Peier20Xi Ai21Jason Cassaday22Merck & Co., Inc. Cambridge Massachusetts USAMerck & Co., Inc. Cambridge Massachusetts USAMerck & Co., Inc. West Point Pennsylvania USAMerck & Co., Inc. Cambridge Massachusetts USAMerck & Co., Inc. Cambridge Massachusetts USAMerck & Co., Inc. West Point Pennsylvania USAMerck & Co., Inc. Kenilworth New Jersey USAMerck & Co., Inc. Kenilworth New Jersey USAAgency for Science, Technology and Research (A*STAR) Singapore SingaporeAgency for Science, Technology and Research (A*STAR) Singapore SingaporeAgency for Science, Technology and Research (A*STAR) Singapore SingaporeAgency for Science, Technology and Research (A*STAR) Singapore SingaporeAgency for Science, Technology and Research (A*STAR) Singapore SingaporeMSD International Singapore SingaporeMSD International Singapore SingaporeMerck & Co., Inc. Cambridge Massachusetts USAMerck & Co., Inc. Kenilworth New Jersey USAMerck & Co., Inc. Cambridge Massachusetts USAMerck & Co., Inc. Cambridge Massachusetts USAMerck & Co., Inc. West Point Pennsylvania USAMerck & Co., Inc. Kenilworth New Jersey USAMerck & Co., Inc. Kenilworth New Jersey USAMerck & Co., Inc. West Point Pennsylvania USAAbstract Cyclic peptides are poised to target historically difficult to drug intracellular protein–protein interactions, however, their general cell impermeability poses a challenge for characterizing function. Recent advances in microfluidics have enabled permeabilization of the cytoplasmic membrane by physical cell deformation (i.e., mechanoporation), resulting in intracellular delivery of impermeable macromolecules in vector‐ and electrophoretic‐free approaches. However, the number of payloads (e.g., peptides) and/or concentrations delivered via microfluidic mechanoporation is limited by having to pre‐mix cells and payloads, a manually intensive process. In this work, we show that cells are momentarily permeable (t1/2 = 1.1–2.8 min) after microfluidic vortex shedding (μVS) and that lower molecular weight macromolecules can be cytosolically delivered upon immediate exposure after cells are processed/permeabilized. To increase the ability to screen peptides, we built a system, dispensing‐microfluidic vortex shedding (DμVS), that integrates a μVS chip with inline microplate‐based dispensing. To do so, we synced an electronic pressure regulator, flow sensor, on/off dispense valve, and an x‐y motion platform in a software‐driven feedback loop. Using this system, we were able to deliver low microliter‐scale volumes of transiently mechanoporated cells to hundreds of wells on microtiter plates in just several minutes (e.g., 96‐well plate filled in <2.5 min). We validated the delivery of an impermeable peptide directed at MDM2, a negative regulator of the tumor suppressor p53, using a click chemistry‐ and NanoBRET‐based cell permeability assay in 96‐well format, with robust delivery across the full plate. Furthermore, we demonstrated that DμVS could be used to identify functional, low micromolar, cellular activity of otherwise cell‐inactive MDM2‐binding peptides using a p53 reporter cell assay in 96‐ and 384‐well format. Overall, DμVS can be combined with downstream cell assays to investigate intracellular target engagement in a high‐throughput manner, both for improving structure–activity relationship efforts and for early proof‐of‐biology of non‐optimized peptide (or potentially other macromolecular) tools.https://doi.org/10.1002/btm2.10542automationcell‐based assayscyclic peptidesintracellular deliverymicrofluidicsprotein–protein interactions
spellingShingle Stephen H. Kasper
Stephanie Otten
Brian Squadroni
Cionna Orr‐Terry
Yi Kuang
Lily Mussallem
Lan Ge
Lin Yan
Srinivasaraghavan Kannan
Chandra S. Verma
Christopher J. Brown
Charles W. Johannes
David P. Lane
Arun Chandramohan
Anthony W. Partridge
Lee R. Roberts
Hubert Josien
Alex G. Therien
Erik C. Hett
Bonnie J. Howell
Andrea Peier
Xi Ai
Jason Cassaday
A high‐throughput microfluidic mechanoporation platform to enable intracellular delivery of cyclic peptides in cell‐based assays
Bioengineering & Translational Medicine
automation
cell‐based assays
cyclic peptides
intracellular delivery
microfluidics
protein–protein interactions
title A high‐throughput microfluidic mechanoporation platform to enable intracellular delivery of cyclic peptides in cell‐based assays
title_full A high‐throughput microfluidic mechanoporation platform to enable intracellular delivery of cyclic peptides in cell‐based assays
title_fullStr A high‐throughput microfluidic mechanoporation platform to enable intracellular delivery of cyclic peptides in cell‐based assays
title_full_unstemmed A high‐throughput microfluidic mechanoporation platform to enable intracellular delivery of cyclic peptides in cell‐based assays
title_short A high‐throughput microfluidic mechanoporation platform to enable intracellular delivery of cyclic peptides in cell‐based assays
title_sort high throughput microfluidic mechanoporation platform to enable intracellular delivery of cyclic peptides in cell based assays
topic automation
cell‐based assays
cyclic peptides
intracellular delivery
microfluidics
protein–protein interactions
url https://doi.org/10.1002/btm2.10542
work_keys_str_mv AT stephenhkasper ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT stephanieotten ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT briansquadroni ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT cionnaorrterry ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT yikuang ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT lilymussallem ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT lange ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT linyan ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT srinivasaraghavankannan ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT chandrasverma ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT christopherjbrown ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT charleswjohannes ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT davidplane ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT arunchandramohan ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT anthonywpartridge ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT leerroberts ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT hubertjosien ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT alexgtherien ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT erikchett ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT bonniejhowell ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT andreapeier ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT xiai ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT jasoncassaday ahighthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT stephenhkasper highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT stephanieotten highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT briansquadroni highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT cionnaorrterry highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT yikuang highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT lilymussallem highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT lange highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT linyan highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT srinivasaraghavankannan highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT chandrasverma highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT christopherjbrown highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT charleswjohannes highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT davidplane highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT arunchandramohan highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT anthonywpartridge highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT leerroberts highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT hubertjosien highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT alexgtherien highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT erikchett highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT bonniejhowell highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT andreapeier highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT xiai highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays
AT jasoncassaday highthroughputmicrofluidicmechanoporationplatformtoenableintracellulardeliveryofcyclicpeptidesincellbasedassays