Weyl Prior and Bayesian Statistics

When using Bayesian inference, one needs to choose a prior distribution for parameters. The well-known Jeffreys prior is based on the Riemann metric tensor on a statistical manifold. Takeuchi and Amari defined the <inline-formula> <math display="inline"> <semantics> <m...

Full description

Bibliographic Details
Main Authors: Ruichao Jiang, Javad Tavakoli, Yiqiang Zhao
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/4/467
_version_ 1797570173563043840
author Ruichao Jiang
Javad Tavakoli
Yiqiang Zhao
author_facet Ruichao Jiang
Javad Tavakoli
Yiqiang Zhao
author_sort Ruichao Jiang
collection DOAJ
description When using Bayesian inference, one needs to choose a prior distribution for parameters. The well-known Jeffreys prior is based on the Riemann metric tensor on a statistical manifold. Takeuchi and Amari defined the <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-parallel prior, which generalized the Jeffreys prior by exploiting a higher-order geometric object, known as a Chentsov–Amari tensor. In this paper, we propose a new prior based on the Weyl structure on a statistical manifold. It turns out that our prior is a special case of the <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-parallel prior with the parameter <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula> equaling <inline-formula> <math display="inline"> <semantics> <mrow> <mo>−</mo> <mi>n</mi> </mrow> </semantics> </math> </inline-formula>, where <i>n</i> is the dimension of the underlying statistical manifold and the minus sign is a result of conventions used in the definition of <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-connections. This makes the choice for the parameter <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula> more canonical. We calculated the Weyl prior for univariate Gaussian and multivariate Gaussian distribution. The Weyl prior of the univariate Gaussian turns out to be the uniform prior.
first_indexed 2024-03-10T20:21:10Z
format Article
id doaj.art-4ee835f9cd474d19897be174e9b633d0
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T20:21:10Z
publishDate 2020-04-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-4ee835f9cd474d19897be174e9b633d02023-11-19T22:08:26ZengMDPI AGEntropy1099-43002020-04-0122446710.3390/e22040467Weyl Prior and Bayesian StatisticsRuichao Jiang0Javad Tavakoli1Yiqiang Zhao2Department of Mathematics, The University of British Columbia Okanagan, Kelowna, BC V1V 1V7, CanadaDepartment of Mathematics, The University of British Columbia Okanagan, Kelowna, BC V1V 1V7, CanadaSchool of Mathematics and Statistics, Carlton University, Ottawa, ON K1S 5B6, CanadaWhen using Bayesian inference, one needs to choose a prior distribution for parameters. The well-known Jeffreys prior is based on the Riemann metric tensor on a statistical manifold. Takeuchi and Amari defined the <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-parallel prior, which generalized the Jeffreys prior by exploiting a higher-order geometric object, known as a Chentsov–Amari tensor. In this paper, we propose a new prior based on the Weyl structure on a statistical manifold. It turns out that our prior is a special case of the <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-parallel prior with the parameter <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula> equaling <inline-formula> <math display="inline"> <semantics> <mrow> <mo>−</mo> <mi>n</mi> </mrow> </semantics> </math> </inline-formula>, where <i>n</i> is the dimension of the underlying statistical manifold and the minus sign is a result of conventions used in the definition of <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-connections. This makes the choice for the parameter <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula> more canonical. We calculated the Weyl prior for univariate Gaussian and multivariate Gaussian distribution. The Weyl prior of the univariate Gaussian turns out to be the uniform prior.https://www.mdpi.com/1099-4300/22/4/467information geometryBayesian statisticsprior distributionsconformal geometry
spellingShingle Ruichao Jiang
Javad Tavakoli
Yiqiang Zhao
Weyl Prior and Bayesian Statistics
Entropy
information geometry
Bayesian statistics
prior distributions
conformal geometry
title Weyl Prior and Bayesian Statistics
title_full Weyl Prior and Bayesian Statistics
title_fullStr Weyl Prior and Bayesian Statistics
title_full_unstemmed Weyl Prior and Bayesian Statistics
title_short Weyl Prior and Bayesian Statistics
title_sort weyl prior and bayesian statistics
topic information geometry
Bayesian statistics
prior distributions
conformal geometry
url https://www.mdpi.com/1099-4300/22/4/467
work_keys_str_mv AT ruichaojiang weylpriorandbayesianstatistics
AT javadtavakoli weylpriorandbayesianstatistics
AT yiqiangzhao weylpriorandbayesianstatistics