Summary: | Firebrands are the primary source of ignition for large wildfires and urban wildfires (WUIs). China is a country with a high incidence of forest fires, and there are great differences in the terrain, climate, and other natural conditions in different regions; the frequency of forest fire will lead to greater regional differences. In the process of fighting forest fire, the fire commander should make an accurate analysis and judgment according to the various signs of the fire, which are the key to ensure the safety of the participants and to realize a quick decision. Existing studies of firebrands formation have been performed using limited quantities of wildland fuels with limited MC fuel levels and environmental conditions and lacking comprehensive data analysis including typical wildland timbers basic fuel, pyrolysis and flammability properties, and forest fire dynamic knowledge (including forest fire development period analysis and the harm of heat flux to the human body) to guide the firefighting strategy. To better understand the characteristics of firebrand formation in different Chinese regional places, a systematic study to quantify wildland fuels ignition formation by testing different fuels under different conditions is needed. The objective of this study was to determine the basic pyrolysis and flammability of wildland fuels with high fire intensity in typical areas of China to provide relevant property data, offering insight into how wildland fuels arrangement can determine the movement of wildfires for firefighting strategy. Thermogravimetric analysis (TGA) was used to determine the pyrolysis performance of selected wild fuels under different heating rates and different fuel MC values. The flammability of selected wildland fuels at different heat fluxes and at different moisture contents was determined using a cone calorimeter. This study measured the pyrolysis and flammability of some selected wildland fuels and found that some controlling factors (MC levels, heating conditions) influenced the outcome variables, especially the flammability of wildland timber. Fire behavior refers to the intensity at which a fire burns and how it moves. This research results point out the following: (1) Forest fire barriers or fuel breaks should be separated among <i>Eucalyptus robusta Smith</i> and <i>Pinus massoniana</i> before or in the fire due to high risk for ignition and strong flammability, and it is suggested to remove, control, and replace high-risk flammable timbers with low-risk flammable timbers as a part of long-term wildland fire management strategies. (2) Fire commanders could utilize some research to test conclusions and make an accurate analysis and judgment: The TTI time for each material indicates the ideal time for firefighters to put out fire, the peak of heat-release time indicates a fully developed fire to suggest firefighters finish work before the forest fire spirals out of control, and the flameout time represents the moment of low risk of fuel ignition, so firefighters could allow the fuel to burn out and change the extinguishing target to other regions of developing forest firebrands.
|