Tregs biomimetic nanoparticle to reprogram inflammatory and redox microenvironment in infarct tissue to treat myocardial ischemia reperfusion injury in mice

Abstract Background At present, patients with myocardial infarction remain an increased risk for myocardial ischemia/reperfusion injury (MI/RI). There lacks effectively method to treat MI/RI in clinic. For the treatment of MI/RI, it is still a bottleneck to effectively deliver drug to ischemic myoca...

Full description

Bibliographic Details
Main Authors: Fangyuan Li, Daozhou Liu, Miao Liu, Qifeng Ji, Bangle Zhang, Qibing Mei, Ying Cheng, Siyuan Zhou
Format: Article
Language:English
Published: BMC 2022-06-01
Series:Journal of Nanobiotechnology
Subjects:
Online Access:https://doi.org/10.1186/s12951-022-01445-2
Description
Summary:Abstract Background At present, patients with myocardial infarction remain an increased risk for myocardial ischemia/reperfusion injury (MI/RI). There lacks effectively method to treat MI/RI in clinic. For the treatment of MI/RI, it is still a bottleneck to effectively deliver drug to ischemic myocardium. In this paper, a regulatory T cells (Tregs) biomimetic nanoparticle (CsA@PPTK) was prepared by camouflaging nanoparticle with platelet membrane. Results CsA@PPTK actively accumulated in ischemic myocardium of MI/RI mice. CsA@PPTK significantly scavenged reactive oxygen species (ROS) and increased the generation of Tregs and the ratio of M2 type macrophage to M1 type macrophage in ischemic myocardium. Moreover, CsA@PPTK significantly attenuated apoptosis of cardiomyocytes and reduced the infarct size and fibrosis area in ischemic myocardium. CsA@PPTK markedly decreased the protein expression of MMP-9 and increased the protein expression of CX43 in ischemic myocardium tissue. Subsequently, the remodeling of the left ventricle was significant alleviated, and heart function of MI/RI mice was markedly improved. Conclusion CsA@PPTK showed significant therapeutic effect on MI/RI, and it has great potential application in the treatment of MI/RI. Graphical Abstract
ISSN:1477-3155