Entropy Optimization, Maxwell–Boltzmann, and Rayleigh Distributions

In physics, communication theory, engineering, statistics, and other areas, one of the methods of deriving distributions is the optimization of an appropriate measure of entropy under relevant constraints. In this paper, it is shown that by optimizing a measure of entropy introduced by the second au...

Full description

Bibliographic Details
Main Authors: Nicy Sebastian, Arak M. Mathai, Hans J. Haubold
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/6/754
Description
Summary:In physics, communication theory, engineering, statistics, and other areas, one of the methods of deriving distributions is the optimization of an appropriate measure of entropy under relevant constraints. In this paper, it is shown that by optimizing a measure of entropy introduced by the second author, one can derive densities of univariate, multivariate, and matrix-variate distributions in the real, as well as complex, domain. Several such scalar, multivariate, and matrix-variate distributions are derived. These include multivariate and matrix-variate Maxwell–Boltzmann and Rayleigh densities in the real and complex domains, multivariate Student-t, Cauchy, matrix-variate type-1 beta, type-2 beta, and gamma densities and their generalizations.
ISSN:1099-4300