Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations

We propose an optimal electric energy management of a cooperative multi-microgrid community with sequentially coordinated operations. The sequentially coordinated operations are suggested to distribute computational burden and yet to make the optimal 24 energy management of multi-microgrids possible...

Full description

Bibliographic Details
Main Authors: Nah-Oak Song, Ji-Hye Lee, Hak-Man Kim, Yong Hoon Im, Jae Yong Lee
Format: Article
Language:English
Published: MDPI AG 2015-08-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/8/8/8371
Description
Summary:We propose an optimal electric energy management of a cooperative multi-microgrid community with sequentially coordinated operations. The sequentially coordinated operations are suggested to distribute computational burden and yet to make the optimal 24 energy management of multi-microgrids possible. The sequential operations are mathematically modeled to find the optimal operation conditions and illustrated with physical interpretation of how to achieve optimal energy management in the cooperative multi-microgrid community. This global electric energy optimization of the cooperative community is realized by the ancillary internal trading between the microgrids in the cooperative community which reduces the extra cost from unnecessary external trading by adjusting the electric energy production amounts of combined heat and power (CHP) generators and amounts of both internal and external electric energy trading of the cooperative community. A simulation study is also conducted to validate the proposed mathematical energy management models.
ISSN:1996-1073