Summary: | As a common agricultural waste, corn straw (CS) has a refractory structure, which is not conducive to anaerobic digestion (AD). Appropriate pretreatment is crucial for addressing this problem. Thus, freeze vacuum drying (FVD) was proposed. In this study, fresh CS (F-CS) pretreated (5 h, −40 °C) by FVD and naturally dried CS (D-CS) were compared. Differences in substrate surface structure and nutrient composition were first investigated. Results show that a loose and porous structure, crystallinity, and broken chemical bonds, as well as higher proportions of VS, C, N, cellulose, hemicellulose, and crude proteins in F-CS show a potential for methane production. Besides, process performance and stability were also examined in both high (4, VS basis) and low (1, VS basis) S/I ratio AD. A higher degradation ratio of hemicellulose as well as richer dissolved microbial metabolites, coenzymes, tyrosine-like proteins, and hydrolysis rate of particulate organic matter in the F-CS system enhanced the efficiency of methane conversion. The cumulative methane yield increased from 169.66 (D-CS) to 209.97 (F-CS) mL/gVS in the high S/I ratio system (<i>p</i> = 0.02 < 0.05), and 156.97 to 171.89 mL/gVS in the low S/I ratio system. Additionally, 16S-rRNA-gene-based analysis was performed. Interestingly, the coordination of key bacteria (<i>Clostridium_sensu_stricto_1</i>, <i>Bacillus</i>, <i>Terrisporobacter</i>, <i>Clostridium_sensu_stricto_7</i>, <i>Thermoclostrium</i>, <i>UCG-012</i>, and <i>HN-HF0106</i>) was more active. Poorer <i>Methanosarcina</i> and <i>Methanomassiliicoccus</i> as well as richer <i>Methanobrevibacter</i> and <i>Methanoculleus</i> stimulated the co-relationship of key archaea with diverse methanogenesis pathways. This study aims to verify the positive effect of FVD pretreatment on AD of CS, so as to provide a reference for applications in waste management.
|