About non-maximality of the action functional

In this work first we review some cases where the action exhibits a minimal or a saddle-point criticality for velocity-independent potentials (V(x, t)) and maximum when the potential is velocity-dependent (V(x,ẋ,t)). In the following we will use the functional (“directional”) derivative of second o...

Full description

Bibliographic Details
Main Authors: W. Freire, J. P. N. Lima
Format: Article
Language:English
Published: AIP Publishing LLC 2012-09-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4747508
_version_ 1811321531717910528
author W. Freire
J. P. N. Lima
author_facet W. Freire
J. P. N. Lima
author_sort W. Freire
collection DOAJ
description In this work first we review some cases where the action exhibits a minimal or a saddle-point criticality for velocity-independent potentials (V(x, t)) and maximum when the potential is velocity-dependent (V(x,ẋ,t)). In the following we will use the functional (“directional”) derivative of second order to present a mathematically rigorous proof of the non-maximality of the classical functional action for potentials V(x, t) velocity-independent.
first_indexed 2024-04-13T13:19:42Z
format Article
id doaj.art-4f2e0c1fa95d4bfeb99ce5a5e1a08437
institution Directory Open Access Journal
issn 2158-3226
language English
last_indexed 2024-04-13T13:19:42Z
publishDate 2012-09-01
publisher AIP Publishing LLC
record_format Article
series AIP Advances
spelling doaj.art-4f2e0c1fa95d4bfeb99ce5a5e1a084372022-12-22T02:45:22ZengAIP Publishing LLCAIP Advances2158-32262012-09-0123032141032141-510.1063/1.4747508041203ADVAbout non-maximality of the action functionalW. Freire0J. P. N. Lima1Departamento de Física, Universidade Regional do Cariri - Campus Crajubar, Rua Leão Sampaio, 107 - Triângulo 63.040-000 - Juazeiro do Norte, Ceará, BrazilDepartamento de Física, Universidade Regional do Cariri - Campus Crajubar, Rua Leão Sampaio, 107 - Triângulo 63.040-000 - Juazeiro do Norte, Ceará, BrazilIn this work first we review some cases where the action exhibits a minimal or a saddle-point criticality for velocity-independent potentials (V(x, t)) and maximum when the potential is velocity-dependent (V(x,ẋ,t)). In the following we will use the functional (“directional”) derivative of second order to present a mathematically rigorous proof of the non-maximality of the classical functional action for potentials V(x, t) velocity-independent.http://dx.doi.org/10.1063/1.4747508
spellingShingle W. Freire
J. P. N. Lima
About non-maximality of the action functional
AIP Advances
title About non-maximality of the action functional
title_full About non-maximality of the action functional
title_fullStr About non-maximality of the action functional
title_full_unstemmed About non-maximality of the action functional
title_short About non-maximality of the action functional
title_sort about non maximality of the action functional
url http://dx.doi.org/10.1063/1.4747508
work_keys_str_mv AT wfreire aboutnonmaximalityoftheactionfunctional
AT jpnlima aboutnonmaximalityoftheactionfunctional