About non-maximality of the action functional
In this work first we review some cases where the action exhibits a minimal or a saddle-point criticality for velocity-independent potentials (V(x, t)) and maximum when the potential is velocity-dependent (V(x,ẋ,t)). In the following we will use the functional (“directional”) derivative of second o...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2012-09-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/1.4747508 |
_version_ | 1811321531717910528 |
---|---|
author | W. Freire J. P. N. Lima |
author_facet | W. Freire J. P. N. Lima |
author_sort | W. Freire |
collection | DOAJ |
description | In this work first we review some cases where the action exhibits a minimal or a saddle-point criticality for velocity-independent potentials (V(x, t)) and maximum when the potential is velocity-dependent (V(x,ẋ,t)). In the following we will use the functional (“directional”) derivative of second order to present a mathematically rigorous proof of the non-maximality of the classical functional action for potentials V(x, t) velocity-independent. |
first_indexed | 2024-04-13T13:19:42Z |
format | Article |
id | doaj.art-4f2e0c1fa95d4bfeb99ce5a5e1a08437 |
institution | Directory Open Access Journal |
issn | 2158-3226 |
language | English |
last_indexed | 2024-04-13T13:19:42Z |
publishDate | 2012-09-01 |
publisher | AIP Publishing LLC |
record_format | Article |
series | AIP Advances |
spelling | doaj.art-4f2e0c1fa95d4bfeb99ce5a5e1a084372022-12-22T02:45:22ZengAIP Publishing LLCAIP Advances2158-32262012-09-0123032141032141-510.1063/1.4747508041203ADVAbout non-maximality of the action functionalW. Freire0J. P. N. Lima1Departamento de Física, Universidade Regional do Cariri - Campus Crajubar, Rua Leão Sampaio, 107 - Triângulo 63.040-000 - Juazeiro do Norte, Ceará, BrazilDepartamento de Física, Universidade Regional do Cariri - Campus Crajubar, Rua Leão Sampaio, 107 - Triângulo 63.040-000 - Juazeiro do Norte, Ceará, BrazilIn this work first we review some cases where the action exhibits a minimal or a saddle-point criticality for velocity-independent potentials (V(x, t)) and maximum when the potential is velocity-dependent (V(x,ẋ,t)). In the following we will use the functional (“directional”) derivative of second order to present a mathematically rigorous proof of the non-maximality of the classical functional action for potentials V(x, t) velocity-independent.http://dx.doi.org/10.1063/1.4747508 |
spellingShingle | W. Freire J. P. N. Lima About non-maximality of the action functional AIP Advances |
title | About non-maximality of the action functional |
title_full | About non-maximality of the action functional |
title_fullStr | About non-maximality of the action functional |
title_full_unstemmed | About non-maximality of the action functional |
title_short | About non-maximality of the action functional |
title_sort | about non maximality of the action functional |
url | http://dx.doi.org/10.1063/1.4747508 |
work_keys_str_mv | AT wfreire aboutnonmaximalityoftheactionfunctional AT jpnlima aboutnonmaximalityoftheactionfunctional |