Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi

Abstract The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion and time-reversal symmetry breaking provides a unique platform for exploring novel topological states. Here, by employing multiple experimental techniques, we demonstrate that ferromagnetism and pre...

Full description

Bibliographic Details
Main Authors: Erjian Cheng, Limin Yan, Xianbiao Shi, Rui Lou, Alexander Fedorov, Mahdi Behnami, Jian Yuan, Pengtao Yang, Bosen Wang, Jin-Guang Cheng, Yuanji Xu, Yang Xu, Wei Xia, Nikolai Pavlovskii, Darren C. Peets, Weiwei Zhao, Yimin Wan, Ulrich Burkhardt, Yanfeng Guo, Shiyan Li, Claudia Felser, Wenge Yang, Bernd Büchner
Format: Article
Language:English
Published: Nature Portfolio 2024-02-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-45658-5
_version_ 1797273949485137920
author Erjian Cheng
Limin Yan
Xianbiao Shi
Rui Lou
Alexander Fedorov
Mahdi Behnami
Jian Yuan
Pengtao Yang
Bosen Wang
Jin-Guang Cheng
Yuanji Xu
Yang Xu
Wei Xia
Nikolai Pavlovskii
Darren C. Peets
Weiwei Zhao
Yimin Wan
Ulrich Burkhardt
Yanfeng Guo
Shiyan Li
Claudia Felser
Wenge Yang
Bernd Büchner
author_facet Erjian Cheng
Limin Yan
Xianbiao Shi
Rui Lou
Alexander Fedorov
Mahdi Behnami
Jian Yuan
Pengtao Yang
Bosen Wang
Jin-Guang Cheng
Yuanji Xu
Yang Xu
Wei Xia
Nikolai Pavlovskii
Darren C. Peets
Weiwei Zhao
Yimin Wan
Ulrich Burkhardt
Yanfeng Guo
Shiyan Li
Claudia Felser
Wenge Yang
Bernd Büchner
author_sort Erjian Cheng
collection DOAJ
description Abstract The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion and time-reversal symmetry breaking provides a unique platform for exploring novel topological states. Here, by employing multiple experimental techniques, we demonstrate that ferromagnetism and pressure can serve as efficient parameters to tune the positions of Weyl nodes in CeAlSi. At ambient pressure, a magnetism-facilitated anomalous Hall/Nernst effect (AHE/ANE) is uncovered. Angle-resolved photoemission spectroscopy (ARPES) measurements demonstrated that the Weyl nodes with opposite chirality are moving away from each other upon entering the ferromagnetic phase. Under pressure, by tracing the pressure evolution of AHE and band structure, we demonstrate that pressure could also serve as a pivotal knob to tune the positions of Weyl nodes. Moreover, multiple pressure-induced phase transitions are also revealed. These findings indicate that CeAlSi provides a unique and tunable platform for exploring exotic topological physics and electron correlations, as well as catering to potential applications, such as spintronics.
first_indexed 2024-03-07T14:51:26Z
format Article
id doaj.art-4f36591062704ab98234fc15e6518a09
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-07T14:51:26Z
publishDate 2024-02-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-4f36591062704ab98234fc15e6518a092024-03-05T19:39:00ZengNature PortfolioNature Communications2041-17232024-02-0115111010.1038/s41467-024-45658-5Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSiErjian Cheng0Limin Yan1Xianbiao Shi2Rui Lou3Alexander Fedorov4Mahdi Behnami5Jian Yuan6Pengtao Yang7Bosen Wang8Jin-Guang Cheng9Yuanji Xu10Yang Xu11Wei Xia12Nikolai Pavlovskii13Darren C. Peets14Weiwei Zhao15Yimin Wan16Ulrich Burkhardt17Yanfeng Guo18Shiyan Li19Claudia Felser20Wenge Yang21Bernd Büchner22Leibniz Institute for Solid State and Materials Research (IFW-Dresden)Center for High Pressure Science and Technology Advanced ResearchState Key Laboratory of Advanced Welding & Joining, Harbin Institute of TechnologyLeibniz Institute for Solid State and Materials Research (IFW-Dresden)Leibniz Institute for Solid State and Materials Research (IFW-Dresden)Leibniz Institute for Solid State and Materials Research (IFW-Dresden)School of Physical Science and Technology, ShanghaiTech UniversityBeijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of SciencesBeijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of SciencesBeijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of SciencesInstitute for Applied Physics, University of Science and Technology BeijingKey Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal UniversitySchool of Physical Science and Technology, ShanghaiTech UniversityInstitute of Solid State and Materials Physics, Technische Universität DresdenInstitute of Solid State and Materials Physics, Technische Universität DresdenState Key Laboratory of Advanced Welding & Joining, Harbin Institute of TechnologyState Key Laboratory of Surface Physics, and Department of Physics, Fudan UniversityMax Planck Institute for Chemical Physics of SolidsSchool of Physical Science and Technology, ShanghaiTech UniversityState Key Laboratory of Surface Physics, and Department of Physics, Fudan UniversityMax Planck Institute for Chemical Physics of SolidsCenter for High Pressure Science and Technology Advanced ResearchLeibniz Institute for Solid State and Materials Research (IFW-Dresden)Abstract The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion and time-reversal symmetry breaking provides a unique platform for exploring novel topological states. Here, by employing multiple experimental techniques, we demonstrate that ferromagnetism and pressure can serve as efficient parameters to tune the positions of Weyl nodes in CeAlSi. At ambient pressure, a magnetism-facilitated anomalous Hall/Nernst effect (AHE/ANE) is uncovered. Angle-resolved photoemission spectroscopy (ARPES) measurements demonstrated that the Weyl nodes with opposite chirality are moving away from each other upon entering the ferromagnetic phase. Under pressure, by tracing the pressure evolution of AHE and band structure, we demonstrate that pressure could also serve as a pivotal knob to tune the positions of Weyl nodes. Moreover, multiple pressure-induced phase transitions are also revealed. These findings indicate that CeAlSi provides a unique and tunable platform for exploring exotic topological physics and electron correlations, as well as catering to potential applications, such as spintronics.https://doi.org/10.1038/s41467-024-45658-5
spellingShingle Erjian Cheng
Limin Yan
Xianbiao Shi
Rui Lou
Alexander Fedorov
Mahdi Behnami
Jian Yuan
Pengtao Yang
Bosen Wang
Jin-Guang Cheng
Yuanji Xu
Yang Xu
Wei Xia
Nikolai Pavlovskii
Darren C. Peets
Weiwei Zhao
Yimin Wan
Ulrich Burkhardt
Yanfeng Guo
Shiyan Li
Claudia Felser
Wenge Yang
Bernd Büchner
Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi
Nature Communications
title Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi
title_full Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi
title_fullStr Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi
title_full_unstemmed Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi
title_short Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi
title_sort tunable positions of weyl nodes via magnetism and pressure in the ferromagnetic weyl semimetal cealsi
url https://doi.org/10.1038/s41467-024-45658-5
work_keys_str_mv AT erjiancheng tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT liminyan tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT xianbiaoshi tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT ruilou tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT alexanderfedorov tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT mahdibehnami tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT jianyuan tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT pengtaoyang tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT bosenwang tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT jinguangcheng tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT yuanjixu tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT yangxu tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT weixia tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT nikolaipavlovskii tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT darrencpeets tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT weiweizhao tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT yiminwan tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT ulrichburkhardt tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT yanfengguo tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT shiyanli tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT claudiafelser tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT wengeyang tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi
AT berndbuchner tunablepositionsofweylnodesviamagnetismandpressureintheferromagneticweylsemimetalcealsi