Fat Triangulations, Curvature and Quasiconformal Mappings

We  investigate  the interplay between  the existence  of  fat triangulations, P L approximations of Lipschitz–Killing curvatures and the existence of quasiconformal mappings.  In particular we prove that if there exists a quasiconformal  mapping between two P L or smooth n-manifolds, then their Lip...

Full description

Bibliographic Details
Main Authors: Emil Saucan, Meir Katchalski
Format: Article
Language:English
Published: MDPI AG 2012-07-01
Series:Axioms
Subjects:
Online Access:http://www.mdpi.com/2075-1680/1/2/99
_version_ 1818976931635265536
author Emil Saucan
Meir Katchalski
author_facet Emil Saucan
Meir Katchalski
author_sort Emil Saucan
collection DOAJ
description We  investigate  the interplay between  the existence  of  fat triangulations, P L approximations of Lipschitz–Killing curvatures and the existence of quasiconformal mappings.  In particular we prove that if there exists a quasiconformal  mapping between two P L or smooth n-manifolds, then their Lipschitz–Killing curvatures are bilipschitz equivalent. An extension  to the case of almost Riemannian manifolds, of a previous existence result of quasimeromorphic mappings on manifolds due to the first author is also given.
first_indexed 2024-12-20T16:19:41Z
format Article
id doaj.art-4f37dc17950b4040a1e19362bcf718a7
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-12-20T16:19:41Z
publishDate 2012-07-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-4f37dc17950b4040a1e19362bcf718a72022-12-21T19:33:41ZengMDPI AGAxioms2075-16802012-07-01129911010.3390/axioms1020099Fat Triangulations, Curvature and Quasiconformal MappingsEmil SaucanMeir KatchalskiWe  investigate  the interplay between  the existence  of  fat triangulations, P L approximations of Lipschitz–Killing curvatures and the existence of quasiconformal mappings.  In particular we prove that if there exists a quasiconformal  mapping between two P L or smooth n-manifolds, then their Lipschitz–Killing curvatures are bilipschitz equivalent. An extension  to the case of almost Riemannian manifolds, of a previous existence result of quasimeromorphic mappings on manifolds due to the first author is also given.http://www.mdpi.com/2075-1680/1/2/99fat triangulationLipschitz–Killing curvaturesquasimeromorphic mapping
spellingShingle Emil Saucan
Meir Katchalski
Fat Triangulations, Curvature and Quasiconformal Mappings
Axioms
fat triangulation
Lipschitz–Killing curvatures
quasimeromorphic mapping
title Fat Triangulations, Curvature and Quasiconformal Mappings
title_full Fat Triangulations, Curvature and Quasiconformal Mappings
title_fullStr Fat Triangulations, Curvature and Quasiconformal Mappings
title_full_unstemmed Fat Triangulations, Curvature and Quasiconformal Mappings
title_short Fat Triangulations, Curvature and Quasiconformal Mappings
title_sort fat triangulations curvature and quasiconformal mappings
topic fat triangulation
Lipschitz–Killing curvatures
quasimeromorphic mapping
url http://www.mdpi.com/2075-1680/1/2/99
work_keys_str_mv AT emilsaucan fattriangulationscurvatureandquasiconformalmappings
AT meirkatchalski fattriangulationscurvatureandquasiconformalmappings