Time-dependent dilatancy for brittle rocks

This paper presents a theoretical study on time-dependent dilatancy behaviors for brittle rocks. The theory employs a well-accepted postulation that macroscopically observed dilatancy originates from the expansion of microcracks. The mechanism and dynamic process that microcracks initiate from local...

Full description

Bibliographic Details
Main Authors: Jie Li, Mingyang Wang, Kaiwen Xia, Ning Zhang, Houxu Huang
Format: Article
Language:English
Published: Elsevier 2017-12-01
Series:Journal of Rock Mechanics and Geotechnical Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1674775517301191
Description
Summary:This paper presents a theoretical study on time-dependent dilatancy behaviors for brittle rocks. The theory employs a well-accepted postulation that macroscopically observed dilatancy originates from the expansion of microcracks. The mechanism and dynamic process that microcracks initiate from local stress concentration and grow due to localized tensile stress are analyzed. Then, by generalizing the results from the analysis of single cracks, a parameter and associated equations for its evolution are developed to describe the behaviors of the microcracks. In this circumstance, the relationship between microcracking and dilatancy can be established, and the theoretical equations for characterizing the process of rock dilatancy behaviors are derived. Triaxial compression and creep tests are conducted to validate the developed theory. With properly chosen model parameters, the theory yields a satisfactory accuracy in comparison with the experimental results.
ISSN:1674-7755