Feed-forward microprocessing and splicing activities at a microRNA-containing intron.

The majority of mammalian microRNA (miRNA) genes reside within introns of protein-encoding and non-coding genes, yet the mechanisms coordinating primary transcript processing into both mature miRNA and spliced mRNA are poorly understood. Analysis of melanoma invasion suppressor miR-211 expressed fro...

Full description

Bibliographic Details
Main Authors: Maja M Janas, Mehdi Khaled, Steffen Schubert, Jacob G Bernstein, David Golan, Rosa A Veguilla, David E Fisher, Noam Shomron, Carmit Levy, Carl D Novina
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-10-01
Series:PLoS Genetics
Online Access:http://europepmc.org/articles/PMC3197686?pdf=render
Description
Summary:The majority of mammalian microRNA (miRNA) genes reside within introns of protein-encoding and non-coding genes, yet the mechanisms coordinating primary transcript processing into both mature miRNA and spliced mRNA are poorly understood. Analysis of melanoma invasion suppressor miR-211 expressed from intron 6 of melastatin revealed that microprocessing of miR-211 promotes splicing of the exon 6-exon 7 junction of melastatin by a mechanism requiring the RNase III activity of Drosha. Additionally, mutations in the 5' splice site (5'SS), but not in the 3'SS, branch point, or polypyrimidine tract of intron 6 reduced miR-211 biogenesis and Drosha recruitment to intron 6, indicating that 5'SS recognition by the spliceosome promotes microprocessing of miR-211. Globally, knockdown of U1 splicing factors reduced intronic miRNA expression. Our data demonstrate novel mutually-cooperative microprocessing and splicing activities at an intronic miRNA locus and suggest that the initiation of spliceosome assembly may promote microprocessing of intronic miRNAs.
ISSN:1553-7390
1553-7404