Target motion misjudgments reflect a misperception of the background; revealed using continuous psychophysics
Determining the velocities of target objects as we navigate complex environments is made more difficult by the fact that our own motion adds systematic motion signals to the visual scene. The flow-parsing hypothesis asserts that the background motion is subtracted from visual scenes in such cases as...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2023-11-01
|
Series: | i-Perception |
Online Access: | https://doi.org/10.1177/20416695231214439 |
_version_ | 1797378941359489024 |
---|---|
author | Michael Falconbridge Robert L. Stamps Mark Edwards David R. Badcock |
author_facet | Michael Falconbridge Robert L. Stamps Mark Edwards David R. Badcock |
author_sort | Michael Falconbridge |
collection | DOAJ |
description | Determining the velocities of target objects as we navigate complex environments is made more difficult by the fact that our own motion adds systematic motion signals to the visual scene. The flow-parsing hypothesis asserts that the background motion is subtracted from visual scenes in such cases as a way for the visual system to determine target motions relative to the scene. Here, we address the question of why backgrounds are only partially subtracted in lab settings. At the same time, we probe a much-neglected aspect of scene perception in flow-parsing studies, that is, the perception of the background itself. Here, we present results from three experienced psychophysical participants and one inexperienced participant who took part in three continuous psychophysics experiments. We show that, when the background optic flow pattern is composed of local elements whose motions are congruent with the global optic flow pattern, the incompleteness of the background subtraction can be entirely accounted for by a misperception of the background. When the local velocities comprising the background are randomly dispersed around the average global velocity, an additional factor is needed to explain the subtraction incompleteness. We show that a model where background perception is a result of the brain attempting to infer scene motion due to self-motion can account for these results. |
first_indexed | 2024-03-08T20:14:55Z |
format | Article |
id | doaj.art-4f4d3f80ba154764948bf3ab7107eee2 |
institution | Directory Open Access Journal |
issn | 2041-6695 |
language | English |
last_indexed | 2024-03-08T20:14:55Z |
publishDate | 2023-11-01 |
publisher | SAGE Publishing |
record_format | Article |
series | i-Perception |
spelling | doaj.art-4f4d3f80ba154764948bf3ab7107eee22023-12-22T19:07:33ZengSAGE Publishingi-Perception2041-66952023-11-011410.1177/20416695231214439Target motion misjudgments reflect a misperception of the background; revealed using continuous psychophysicsMichael FalconbridgeRobert L. StampsMark EdwardsDavid R. BadcockDetermining the velocities of target objects as we navigate complex environments is made more difficult by the fact that our own motion adds systematic motion signals to the visual scene. The flow-parsing hypothesis asserts that the background motion is subtracted from visual scenes in such cases as a way for the visual system to determine target motions relative to the scene. Here, we address the question of why backgrounds are only partially subtracted in lab settings. At the same time, we probe a much-neglected aspect of scene perception in flow-parsing studies, that is, the perception of the background itself. Here, we present results from three experienced psychophysical participants and one inexperienced participant who took part in three continuous psychophysics experiments. We show that, when the background optic flow pattern is composed of local elements whose motions are congruent with the global optic flow pattern, the incompleteness of the background subtraction can be entirely accounted for by a misperception of the background. When the local velocities comprising the background are randomly dispersed around the average global velocity, an additional factor is needed to explain the subtraction incompleteness. We show that a model where background perception is a result of the brain attempting to infer scene motion due to self-motion can account for these results.https://doi.org/10.1177/20416695231214439 |
spellingShingle | Michael Falconbridge Robert L. Stamps Mark Edwards David R. Badcock Target motion misjudgments reflect a misperception of the background; revealed using continuous psychophysics i-Perception |
title | Target motion misjudgments reflect a misperception of the background; revealed using continuous psychophysics |
title_full | Target motion misjudgments reflect a misperception of the background; revealed using continuous psychophysics |
title_fullStr | Target motion misjudgments reflect a misperception of the background; revealed using continuous psychophysics |
title_full_unstemmed | Target motion misjudgments reflect a misperception of the background; revealed using continuous psychophysics |
title_short | Target motion misjudgments reflect a misperception of the background; revealed using continuous psychophysics |
title_sort | target motion misjudgments reflect a misperception of the background revealed using continuous psychophysics |
url | https://doi.org/10.1177/20416695231214439 |
work_keys_str_mv | AT michaelfalconbridge targetmotionmisjudgmentsreflectamisperceptionofthebackgroundrevealedusingcontinuouspsychophysics AT robertlstamps targetmotionmisjudgmentsreflectamisperceptionofthebackgroundrevealedusingcontinuouspsychophysics AT markedwards targetmotionmisjudgmentsreflectamisperceptionofthebackgroundrevealedusingcontinuouspsychophysics AT davidrbadcock targetmotionmisjudgmentsreflectamisperceptionofthebackgroundrevealedusingcontinuouspsychophysics |