A New Scheme for Fault Detection and Classification Applied to DC Motor

This study presents an approach for fault detection and classification in a DC drive system. The fault is detected by a classical Luenberger observer. After the fault detection, the fault classification is started. The fault classification, the main contribution of this paper, is based on a represen...

ver descrição completa

Detalhes bibliográficos
Principais autores: Laércio I. Santos, Reinaldo M. Palhares, Marcos F. S. V. D'Angelo, João B. Mendes, Renê R. Veloso, Petr Y. Ekel
Formato: Artigo
Idioma:English
Publicado em: Sociedade Brasileira de Matemática Aplicada e Computacional 2018-09-01
coleção:Trends in Computational and Applied Mathematics
Acesso em linha:https://tcam.sbmac.org.br/tema/article/view/1155
Descrição
Resumo:This study presents an approach for fault detection and classification in a DC drive system. The fault is detected by a classical Luenberger observer. After the fault detection, the fault classification is started. The fault classification, the main contribution of this paper, is based on a representation which combines the Subctrative Clustering algorithm with an adaptation of Particle Swarm Clustering.
ISSN:2676-0029