Aristotelian Diagrams for the Proportional Quantifier ‘Most’
In this paper, we study the interaction between the square of opposition for the Aristotelian quantifiers (‘all’, ‘some’, ‘no’, and ‘not all’) and the square of opposition generated by the proportional quantifier ‘most’ (in its standard generalized quantifier theory reading of ‘more than half’). In...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-02-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/12/3/236 |
_version_ | 1797613478648741888 |
---|---|
author | Hans Smessaert Lorenz Demey |
author_facet | Hans Smessaert Lorenz Demey |
author_sort | Hans Smessaert |
collection | DOAJ |
description | In this paper, we study the interaction between the square of opposition for the Aristotelian quantifiers (‘all’, ‘some’, ‘no’, and ‘not all’) and the square of opposition generated by the proportional quantifier ‘most’ (in its standard generalized quantifier theory reading of ‘more than half’). In a first step, we provide an analysis in terms of bitstring semantics for the two squares independently. The classical square for ‘most’ involves a tripartition of logical space, whereas the degenerate square for ‘all’ in first-order logic (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">FOL</mi></semantics></math></inline-formula>) involves a quadripartition, due to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">FOL</mi></semantics></math></inline-formula>’s lack of existential import. In a second move, we combine these two squares into an octagon of opposition, which was hitherto unattested in logical geometry, while the meet of the original tri- and quadripartitions yields a hexapartition for this octagon. In a final step, we switch from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">FOL</mi></semantics></math></inline-formula> to a logical system, which does assume existential import. This yields an octagon of the well known Lenzen type, and its bitstring semantics is reduced to a pentapartition. |
first_indexed | 2024-03-11T06:56:23Z |
format | Article |
id | doaj.art-4f4ecb32694e4e7da76723246859dbb0 |
institution | Directory Open Access Journal |
issn | 2075-1680 |
language | English |
last_indexed | 2024-03-11T06:56:23Z |
publishDate | 2023-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Axioms |
spelling | doaj.art-4f4ecb32694e4e7da76723246859dbb02023-11-17T09:34:40ZengMDPI AGAxioms2075-16802023-02-0112323610.3390/axioms12030236Aristotelian Diagrams for the Proportional Quantifier ‘Most’Hans Smessaert0Lorenz Demey1Department of Linguistics, KU Leuven, 3000 Leuven, BelgiumCenter for Logic and Philosophy of Science, KU Leuven, 3000 Leuven, BelgiumIn this paper, we study the interaction between the square of opposition for the Aristotelian quantifiers (‘all’, ‘some’, ‘no’, and ‘not all’) and the square of opposition generated by the proportional quantifier ‘most’ (in its standard generalized quantifier theory reading of ‘more than half’). In a first step, we provide an analysis in terms of bitstring semantics for the two squares independently. The classical square for ‘most’ involves a tripartition of logical space, whereas the degenerate square for ‘all’ in first-order logic (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">FOL</mi></semantics></math></inline-formula>) involves a quadripartition, due to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">FOL</mi></semantics></math></inline-formula>’s lack of existential import. In a second move, we combine these two squares into an octagon of opposition, which was hitherto unattested in logical geometry, while the meet of the original tri- and quadripartitions yields a hexapartition for this octagon. In a final step, we switch from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">FOL</mi></semantics></math></inline-formula> to a logical system, which does assume existential import. This yields an octagon of the well known Lenzen type, and its bitstring semantics is reduced to a pentapartition.https://www.mdpi.com/2075-1680/12/3/236square of oppositionoctagon of oppositionlogical geometrybitstring semanticsproportional quantificationAristotelian quantifiers |
spellingShingle | Hans Smessaert Lorenz Demey Aristotelian Diagrams for the Proportional Quantifier ‘Most’ Axioms square of opposition octagon of opposition logical geometry bitstring semantics proportional quantification Aristotelian quantifiers |
title | Aristotelian Diagrams for the Proportional Quantifier ‘Most’ |
title_full | Aristotelian Diagrams for the Proportional Quantifier ‘Most’ |
title_fullStr | Aristotelian Diagrams for the Proportional Quantifier ‘Most’ |
title_full_unstemmed | Aristotelian Diagrams for the Proportional Quantifier ‘Most’ |
title_short | Aristotelian Diagrams for the Proportional Quantifier ‘Most’ |
title_sort | aristotelian diagrams for the proportional quantifier most |
topic | square of opposition octagon of opposition logical geometry bitstring semantics proportional quantification Aristotelian quantifiers |
url | https://www.mdpi.com/2075-1680/12/3/236 |
work_keys_str_mv | AT hanssmessaert aristoteliandiagramsfortheproportionalquantifiermost AT lorenzdemey aristoteliandiagramsfortheproportionalquantifiermost |