On solutions of neumann boundary value problem for the liénard type equation
We provide conditions on the functions f(x) and g(x), which ensure the existence of solutions to the Neumann boundary value problem for the equation x'' + f(x)x'2+g(x)=0. First Published Online: 14 Oct 2010
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
2008-06-01
|
Series: | Mathematical Modelling and Analysis |
Subjects: | |
Online Access: | https://journals.vgtu.lt/index.php/MMA/article/view/6999 |
_version_ | 1818872046272118784 |
---|---|
author | Svetlana Atslega |
author_facet | Svetlana Atslega |
author_sort | Svetlana Atslega |
collection | DOAJ |
description | We provide conditions on the functions f(x) and g(x), which ensure the existence of solutions to the Neumann boundary value problem for the equation x'' + f(x)x'2+g(x)=0.
First Published Online: 14 Oct 2010 |
first_indexed | 2024-12-19T12:32:35Z |
format | Article |
id | doaj.art-4f50399d4f87407cac49e3056438b431 |
institution | Directory Open Access Journal |
issn | 1392-6292 1648-3510 |
language | English |
last_indexed | 2024-12-19T12:32:35Z |
publishDate | 2008-06-01 |
publisher | Vilnius Gediminas Technical University |
record_format | Article |
series | Mathematical Modelling and Analysis |
spelling | doaj.art-4f50399d4f87407cac49e3056438b4312022-12-21T20:21:15ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102008-06-0113210.3846/1392-6292.2008.13.161-169On solutions of neumann boundary value problem for the liénard type equationSvetlana Atslega0Daugavpils University, Parades Str. 1, LV-5400 Daugavpils, LatviaWe provide conditions on the functions f(x) and g(x), which ensure the existence of solutions to the Neumann boundary value problem for the equation x'' + f(x)x'2+g(x)=0. First Published Online: 14 Oct 2010https://journals.vgtu.lt/index.php/MMA/article/view/6999Neumann boundary value problemLiénard equationcritical pointshomoclinic solutionsconservative equation |
spellingShingle | Svetlana Atslega On solutions of neumann boundary value problem for the liénard type equation Mathematical Modelling and Analysis Neumann boundary value problem Liénard equation critical points homoclinic solutions conservative equation |
title | On solutions of neumann boundary value problem for the liénard type equation |
title_full | On solutions of neumann boundary value problem for the liénard type equation |
title_fullStr | On solutions of neumann boundary value problem for the liénard type equation |
title_full_unstemmed | On solutions of neumann boundary value problem for the liénard type equation |
title_short | On solutions of neumann boundary value problem for the liénard type equation |
title_sort | on solutions of neumann boundary value problem for the lienard type equation |
topic | Neumann boundary value problem Liénard equation critical points homoclinic solutions conservative equation |
url | https://journals.vgtu.lt/index.php/MMA/article/view/6999 |
work_keys_str_mv | AT svetlanaatslega onsolutionsofneumannboundaryvalueproblemforthelienardtypeequation |