Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions

This paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequal...

Full description

Bibliographic Details
Main Authors: Adalberto Z. N. Lazarini, Marcelo C. M. Teixeira, Jean M. De S. Ribeiro, Edvaldo Assuncao, Rodrigo Cardim, Ariel S. Buzetti
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9416573/
_version_ 1818715370781933568
author Adalberto Z. N. Lazarini
Marcelo C. M. Teixeira
Jean M. De S. Ribeiro
Edvaldo Assuncao
Rodrigo Cardim
Ariel S. Buzetti
author_facet Adalberto Z. N. Lazarini
Marcelo C. M. Teixeira
Jean M. De S. Ribeiro
Edvaldo Assuncao
Rodrigo Cardim
Ariel S. Buzetti
author_sort Adalberto Z. N. Lazarini
collection DOAJ
description This paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequalities (LMI). The FLF is given by <inline-formula> <tex-math notation="LaTeX">$V(x(t)) = x(t)^{T}P(\alpha (x(t)))x(t)$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$x(t)$ </tex-math></inline-formula> is the plant state vector, <inline-formula> <tex-math notation="LaTeX">$P(\alpha (x(t))) = \alpha _{1}(x(t))P_{1} + \alpha _{2}(x(t))P_{2} + \cdots + \alpha _{r}(x(t))P_{r}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$P_{i}=P_{i}^{T} &gt; 0$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\alpha _{i}(x(t))$ </tex-math></inline-formula> is the weight related to the local model <inline-formula> <tex-math notation="LaTeX">$i$ </tex-math></inline-formula> in the representation of the plant by TS fuzzy models, for <inline-formula> <tex-math notation="LaTeX">$i=1,2,\cdots,r$ </tex-math></inline-formula>. When one calculates the time derivative of this <inline-formula> <tex-math notation="LaTeX">$V(x(t))$ </tex-math></inline-formula>, it appears the term <inline-formula> <tex-math notation="LaTeX">$x(t)^{T}\dot {P}(\alpha (x(t)))x(t)$ </tex-math></inline-formula>, that is usually handled using conservative upper bounds, supposing that the bounds of the time derivative of <inline-formula> <tex-math notation="LaTeX">$\alpha _{i}(x(t))$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$i=1,2,\cdots,r$ </tex-math></inline-formula>, are available. The main result of this paper is a procedure to obtain optimal upper bounds for the term <inline-formula> <tex-math notation="LaTeX">$x(t)^{T}\dot {P}(\alpha (x(t)))x(t)$ </tex-math></inline-formula>, such that they contemplate the maximum value and are always smaller than or equal to the maximum value. It is a relevant result on this subject, because these optimal upper bounds do not add any constraint. With these optimal upper bounds, a relaxed design method for stabilization of TS fuzzy models is proposed. Two numerical examples illustrate the effectiveness of this procedure.
first_indexed 2024-12-17T19:02:17Z
format Article
id doaj.art-4f51dce9c18241d1a5d49befaf774975
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-17T19:02:17Z
publishDate 2021-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-4f51dce9c18241d1a5d49befaf7749752022-12-21T21:36:05ZengIEEEIEEE Access2169-35362021-01-019649456495710.1109/ACCESS.2021.30760309416573Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov FunctionsAdalberto Z. N. Lazarini0https://orcid.org/0000-0001-8380-5573Marcelo C. M. Teixeira1https://orcid.org/0000-0002-2996-2831Jean M. De S. Ribeiro2https://orcid.org/0000-0002-9197-2475Edvaldo Assuncao3Rodrigo Cardim4https://orcid.org/0000-0002-1072-3814Ariel S. Buzetti5Department of Electrical Engineering, Faculty of Engineering of Ilha Solteira, S&#x00E3;o Paulo State University (UNESP), Ilha Solteira, BrazilDepartment of Electrical Engineering, Faculty of Engineering of Ilha Solteira, S&#x00E3;o Paulo State University (UNESP), Ilha Solteira, BrazilDepartment of Electrical Engineering, Faculty of Engineering of Ilha Solteira, S&#x00E3;o Paulo State University (UNESP), Ilha Solteira, BrazilDepartment of Electrical Engineering, Faculty of Engineering of Ilha Solteira, S&#x00E3;o Paulo State University (UNESP), Ilha Solteira, BrazilDepartment of Electrical Engineering, Faculty of Engineering of Ilha Solteira, S&#x00E3;o Paulo State University (UNESP), Ilha Solteira, BrazilDepartment of Electrical Engineering, Faculty of Engineering of Ilha Solteira, S&#x00E3;o Paulo State University (UNESP), Ilha Solteira, BrazilThis paper initially proposes an optimization problem and after presents its optimal solution. Then, this result is applied to obtain relaxed conditions to design controllers for nonlinear plants described by Takagi-Sugeno (TS) models, based on fuzzy Lyapunov function (FLF) and Linear Matrix Inequalities (LMI). The FLF is given by <inline-formula> <tex-math notation="LaTeX">$V(x(t)) = x(t)^{T}P(\alpha (x(t)))x(t)$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$x(t)$ </tex-math></inline-formula> is the plant state vector, <inline-formula> <tex-math notation="LaTeX">$P(\alpha (x(t))) = \alpha _{1}(x(t))P_{1} + \alpha _{2}(x(t))P_{2} + \cdots + \alpha _{r}(x(t))P_{r}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$P_{i}=P_{i}^{T} &gt; 0$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\alpha _{i}(x(t))$ </tex-math></inline-formula> is the weight related to the local model <inline-formula> <tex-math notation="LaTeX">$i$ </tex-math></inline-formula> in the representation of the plant by TS fuzzy models, for <inline-formula> <tex-math notation="LaTeX">$i=1,2,\cdots,r$ </tex-math></inline-formula>. When one calculates the time derivative of this <inline-formula> <tex-math notation="LaTeX">$V(x(t))$ </tex-math></inline-formula>, it appears the term <inline-formula> <tex-math notation="LaTeX">$x(t)^{T}\dot {P}(\alpha (x(t)))x(t)$ </tex-math></inline-formula>, that is usually handled using conservative upper bounds, supposing that the bounds of the time derivative of <inline-formula> <tex-math notation="LaTeX">$\alpha _{i}(x(t))$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$i=1,2,\cdots,r$ </tex-math></inline-formula>, are available. The main result of this paper is a procedure to obtain optimal upper bounds for the term <inline-formula> <tex-math notation="LaTeX">$x(t)^{T}\dot {P}(\alpha (x(t)))x(t)$ </tex-math></inline-formula>, such that they contemplate the maximum value and are always smaller than or equal to the maximum value. It is a relevant result on this subject, because these optimal upper bounds do not add any constraint. With these optimal upper bounds, a relaxed design method for stabilization of TS fuzzy models is proposed. Two numerical examples illustrate the effectiveness of this procedure.https://ieeexplore.ieee.org/document/9416573/Fuzzy Lyapunov function (FLF)Takagi-Sugeno (TS) fuzzy systemslinear matrix inequalities (LMIs)fuzzy controlstabilitystabilization
spellingShingle Adalberto Z. N. Lazarini
Marcelo C. M. Teixeira
Jean M. De S. Ribeiro
Edvaldo Assuncao
Rodrigo Cardim
Ariel S. Buzetti
Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions
IEEE Access
Fuzzy Lyapunov function (FLF)
Takagi-Sugeno (TS) fuzzy systems
linear matrix inequalities (LMIs)
fuzzy control
stability
stabilization
title Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions
title_full Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions
title_fullStr Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions
title_full_unstemmed Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions
title_short Relaxed Stabilization Conditions for TS Fuzzy Systems With Optimal Upper Bounds for the Time Derivative of Fuzzy Lyapunov Functions
title_sort relaxed stabilization conditions for ts fuzzy systems with optimal upper bounds for the time derivative of fuzzy lyapunov functions
topic Fuzzy Lyapunov function (FLF)
Takagi-Sugeno (TS) fuzzy systems
linear matrix inequalities (LMIs)
fuzzy control
stability
stabilization
url https://ieeexplore.ieee.org/document/9416573/
work_keys_str_mv AT adalbertoznlazarini relaxedstabilizationconditionsfortsfuzzysystemswithoptimalupperboundsforthetimederivativeoffuzzylyapunovfunctions
AT marcelocmteixeira relaxedstabilizationconditionsfortsfuzzysystemswithoptimalupperboundsforthetimederivativeoffuzzylyapunovfunctions
AT jeanmdesribeiro relaxedstabilizationconditionsfortsfuzzysystemswithoptimalupperboundsforthetimederivativeoffuzzylyapunovfunctions
AT edvaldoassuncao relaxedstabilizationconditionsfortsfuzzysystemswithoptimalupperboundsforthetimederivativeoffuzzylyapunovfunctions
AT rodrigocardim relaxedstabilizationconditionsfortsfuzzysystemswithoptimalupperboundsforthetimederivativeoffuzzylyapunovfunctions
AT arielsbuzetti relaxedstabilizationconditionsfortsfuzzysystemswithoptimalupperboundsforthetimederivativeoffuzzylyapunovfunctions