Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level

In this paper, we compare model calculations of ozone profiles and their variability for the period 1998 to 2016 with satellite and lidar profiles at five ground-based stations. Under the investigation is the temporal impact of the stratospheric halogen reduction (chemical processes) and increase in...

Full description

Bibliographic Details
Main Authors: Kostas Eleftheratos, John Kapsomenakis, Christos S. Zerefos, Alkiviadis F. Bais, Ilias Fountoulakis, Martin Dameris, Patrick Jöckel, Amund S. Haslerud, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Irina Petropavlovskikh, Colette Brogniez, Thierry Leblanc, J. Ben Liley, Richard Querel, Daan P. J. Swart
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/11/3/228
_version_ 1819078774023520256
author Kostas Eleftheratos
John Kapsomenakis
Christos S. Zerefos
Alkiviadis F. Bais
Ilias Fountoulakis
Martin Dameris
Patrick Jöckel
Amund S. Haslerud
Sophie Godin-Beekmann
Wolfgang Steinbrecht
Irina Petropavlovskikh
Colette Brogniez
Thierry Leblanc
J. Ben Liley
Richard Querel
Daan P. J. Swart
author_facet Kostas Eleftheratos
John Kapsomenakis
Christos S. Zerefos
Alkiviadis F. Bais
Ilias Fountoulakis
Martin Dameris
Patrick Jöckel
Amund S. Haslerud
Sophie Godin-Beekmann
Wolfgang Steinbrecht
Irina Petropavlovskikh
Colette Brogniez
Thierry Leblanc
J. Ben Liley
Richard Querel
Daan P. J. Swart
author_sort Kostas Eleftheratos
collection DOAJ
description In this paper, we compare model calculations of ozone profiles and their variability for the period 1998 to 2016 with satellite and lidar profiles at five ground-based stations. Under the investigation is the temporal impact of the stratospheric halogen reduction (chemical processes) and increase in greenhouse gases (i.e., global warming) on stratospheric ozone changes. Attention is given to the effect of greenhouse gases on ultraviolet-B radiation at ground level. Our chemistry transport and chemistry climate models (Oslo CTM3 and EMAC CCM) indicate that (a) the effect of halogen reduction is maximized in ozone recovery at 1−7 hPa and observed at all lidar stations; and (b) significant impact of greenhouse gases on stratospheric ozone recovery is predicted after the year 2050. Our study indicates that solar ultraviolet-B irradiance that produces DNA damage would increase after the year 2050 by +1.3% per decade. Such change in the model is driven by a significant decrease in cloud cover due to the evolution of greenhouse gases in the future and an insignificant trend in total ozone. If our estimates prove to be true, then it is likely that the process of climate change will overwhelm the effect of ozone recovery on UV-B irradiance in midlatitudes.
first_indexed 2024-12-21T19:18:26Z
format Article
id doaj.art-4f581ea6b9814820900869b2eedf1211
institution Directory Open Access Journal
issn 2073-4433
language English
last_indexed 2024-12-21T19:18:26Z
publishDate 2020-02-01
publisher MDPI AG
record_format Article
series Atmosphere
spelling doaj.art-4f581ea6b9814820900869b2eedf12112022-12-21T18:53:00ZengMDPI AGAtmosphere2073-44332020-02-0111322810.3390/atmos11030228atmos11030228Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground LevelKostas Eleftheratos0John Kapsomenakis1Christos S. Zerefos2Alkiviadis F. Bais3Ilias Fountoulakis4Martin Dameris5Patrick Jöckel6Amund S. Haslerud7Sophie Godin-Beekmann8Wolfgang Steinbrecht9Irina Petropavlovskikh10Colette Brogniez11Thierry Leblanc12J. Ben Liley13Richard Querel14Daan P. J. Swart15Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, GreeceResearch Centre for Atmospheric Physics and Climatology, Academy of Athens, 10680 Athens, GreeceCenter for Environmental Effects on Health, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, GreeceDepartment of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, GreeceDepartment of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, GreeceDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, 82234 Oberpfaffenhofen, GermanyDeutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, 82234 Oberpfaffenhofen, GermanyCicero Center for International Climate Research (CICERO), 0318 Oslo, NorwayLaboratoire Atmosphère Milieux Observations Spatiales, Centre National de la Recherche Scientifique, Université de Versailles Saint-Quentin-en-Yvelines, Université Pierre et Marie Curie, 78284 Guyancourt, FranceDeutscher Wetterdienst, 82383 Hohenpeißenberg, GermanyCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80301, USAUniv. Lille, CNRS, UMR 8518 - Laboratoire d’Optique Atmosphérique, F-59000 Lille, FranceJet Propulsion Laboratory, California Institute of Technology, Wrightwood, CA 92397, USANational Institute of Water & Atmospheric Research (NIWA), 9377 Lauder, New ZealandNational Institute of Water & Atmospheric Research (NIWA), 9377 Lauder, New ZealandCenter for Environmental Quality, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The NetherlandsIn this paper, we compare model calculations of ozone profiles and their variability for the period 1998 to 2016 with satellite and lidar profiles at five ground-based stations. Under the investigation is the temporal impact of the stratospheric halogen reduction (chemical processes) and increase in greenhouse gases (i.e., global warming) on stratospheric ozone changes. Attention is given to the effect of greenhouse gases on ultraviolet-B radiation at ground level. Our chemistry transport and chemistry climate models (Oslo CTM3 and EMAC CCM) indicate that (a) the effect of halogen reduction is maximized in ozone recovery at 1−7 hPa and observed at all lidar stations; and (b) significant impact of greenhouse gases on stratospheric ozone recovery is predicted after the year 2050. Our study indicates that solar ultraviolet-B irradiance that produces DNA damage would increase after the year 2050 by +1.3% per decade. Such change in the model is driven by a significant decrease in cloud cover due to the evolution of greenhouse gases in the future and an insignificant trend in total ozone. If our estimates prove to be true, then it is likely that the process of climate change will overwhelm the effect of ozone recovery on UV-B irradiance in midlatitudes.https://www.mdpi.com/2073-4433/11/3/228ozoneuv-b irradiancehalogensgreenhouse gaseseffects
spellingShingle Kostas Eleftheratos
John Kapsomenakis
Christos S. Zerefos
Alkiviadis F. Bais
Ilias Fountoulakis
Martin Dameris
Patrick Jöckel
Amund S. Haslerud
Sophie Godin-Beekmann
Wolfgang Steinbrecht
Irina Petropavlovskikh
Colette Brogniez
Thierry Leblanc
J. Ben Liley
Richard Querel
Daan P. J. Swart
Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level
Atmosphere
ozone
uv-b irradiance
halogens
greenhouse gases
effects
title Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level
title_full Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level
title_fullStr Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level
title_full_unstemmed Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level
title_short Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level
title_sort possible effects of greenhouse gases to ozone profiles and dna active uv b irradiance at ground level
topic ozone
uv-b irradiance
halogens
greenhouse gases
effects
url https://www.mdpi.com/2073-4433/11/3/228
work_keys_str_mv AT kostaseleftheratos possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT johnkapsomenakis possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT christosszerefos possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT alkiviadisfbais possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT iliasfountoulakis possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT martindameris possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT patrickjockel possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT amundshaslerud possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT sophiegodinbeekmann possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT wolfgangsteinbrecht possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT irinapetropavlovskikh possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT colettebrogniez possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT thierryleblanc possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT jbenliley possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT richardquerel possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel
AT daanpjswart possibleeffectsofgreenhousegasestoozoneprofilesanddnaactiveuvbirradianceatgroundlevel