Acceleration of Wheel Factoring Techniques

The efficiency with which an integer may be factored into its prime factors determines several public key cryptosystems’ security in use today. Although there is a quantum-based technique with a polynomial time for integer factoring, on a traditional computer, there is no polynomial time algorithm....

Full description

Bibliographic Details
Main Authors: Alaa M. Zaki, M. E. Bakr, Arwa M. Alsahangiti, Saima Khan Khosa, Khaled A. Fathy
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/5/1203
Description
Summary:The efficiency with which an integer may be factored into its prime factors determines several public key cryptosystems’ security in use today. Although there is a quantum-based technique with a polynomial time for integer factoring, on a traditional computer, there is no polynomial time algorithm. We investigate how to enhance the wheel factoring technique in this paper. Current wheel factorization algorithms rely on a very restricted set of prime integers as a base. In this study, we intend to adapt this notion to rely on a greater number of prime integers, resulting in a considerable improvement in the execution time. The experiments on composite numbers <i>n</i> reveal that the proposed algorithm improves on the existing wheel factoring algorithm by about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>75</mn><mo>%</mo></mrow></semantics></math></inline-formula>.
ISSN:2227-7390