Analysis and Implementation of a Hybrid DC Converter with Wide Voltage Variation
A new hybrid DC converter is proposed and implemented to have wide voltage variation operation and bidirectional power flow capability for photovoltaic power applications. The hybrid DC converter, including a half- or full-bridge resonant circuit, is adopted to realize the bidirectional power operat...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-10-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/11/21/10211 |
_version_ | 1797512774072401920 |
---|---|
author | Bor-Ren Lin Yue-Ying Zhuang |
author_facet | Bor-Ren Lin Yue-Ying Zhuang |
author_sort | Bor-Ren Lin |
collection | DOAJ |
description | A new hybrid DC converter is proposed and implemented to have wide voltage variation operation and bidirectional power flow capability for photovoltaic power applications. The hybrid DC converter, including a half- or full-bridge resonant circuit, is adopted to realize the bidirectional power operation and low switching losses. To overcome the wide voltage variation problem (60 V–480 V) from photovoltaic panels due to sunlight intensity, the full-bridge structure or half-bridge structure resonant circuit is used in the presented converter to implement high or low voltage gain under a low or high input voltage condition. Using a pulse frequency modulation (PFM) scheme, the voltage transfer function of the resonant circuit is controlled to regulate the load voltage. Due to the symmetric circuit structures used on the primary and the secondary sides in the proposed converter, the bidirectional power flow can be achieved with the same circuit characteristics. Therefore, the proposed converter can be applied to battery stacks to achieve charger and discharger operations. Finally, a 400 W prototype is implemented, and the performance of the proposed hybrid DC converter is confirmed by the experiments. |
first_indexed | 2024-03-10T06:06:26Z |
format | Article |
id | doaj.art-4f5ac0636f214e919ea1781e72aeb4f9 |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-03-10T06:06:26Z |
publishDate | 2021-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-4f5ac0636f214e919ea1781e72aeb4f92023-11-22T20:29:27ZengMDPI AGApplied Sciences2076-34172021-10-0111211021110.3390/app112110211Analysis and Implementation of a Hybrid DC Converter with Wide Voltage VariationBor-Ren Lin0Yue-Ying Zhuang1Department of Electrical Engineering, National Yunlin University of Science and Technology, Yunlin 640, TaiwanDepartment of Electrical Engineering, National Yunlin University of Science and Technology, Yunlin 640, TaiwanA new hybrid DC converter is proposed and implemented to have wide voltage variation operation and bidirectional power flow capability for photovoltaic power applications. The hybrid DC converter, including a half- or full-bridge resonant circuit, is adopted to realize the bidirectional power operation and low switching losses. To overcome the wide voltage variation problem (60 V–480 V) from photovoltaic panels due to sunlight intensity, the full-bridge structure or half-bridge structure resonant circuit is used in the presented converter to implement high or low voltage gain under a low or high input voltage condition. Using a pulse frequency modulation (PFM) scheme, the voltage transfer function of the resonant circuit is controlled to regulate the load voltage. Due to the symmetric circuit structures used on the primary and the secondary sides in the proposed converter, the bidirectional power flow can be achieved with the same circuit characteristics. Therefore, the proposed converter can be applied to battery stacks to achieve charger and discharger operations. Finally, a 400 W prototype is implemented, and the performance of the proposed hybrid DC converter is confirmed by the experiments.https://www.mdpi.com/2076-3417/11/21/10211hybrid DC converterbidirectional power flowwide voltage variationsoft switching |
spellingShingle | Bor-Ren Lin Yue-Ying Zhuang Analysis and Implementation of a Hybrid DC Converter with Wide Voltage Variation Applied Sciences hybrid DC converter bidirectional power flow wide voltage variation soft switching |
title | Analysis and Implementation of a Hybrid DC Converter with Wide Voltage Variation |
title_full | Analysis and Implementation of a Hybrid DC Converter with Wide Voltage Variation |
title_fullStr | Analysis and Implementation of a Hybrid DC Converter with Wide Voltage Variation |
title_full_unstemmed | Analysis and Implementation of a Hybrid DC Converter with Wide Voltage Variation |
title_short | Analysis and Implementation of a Hybrid DC Converter with Wide Voltage Variation |
title_sort | analysis and implementation of a hybrid dc converter with wide voltage variation |
topic | hybrid DC converter bidirectional power flow wide voltage variation soft switching |
url | https://www.mdpi.com/2076-3417/11/21/10211 |
work_keys_str_mv | AT borrenlin analysisandimplementationofahybriddcconverterwithwidevoltagevariation AT yueyingzhuang analysisandimplementationofahybriddcconverterwithwidevoltagevariation |