Learning to represent 2D human face with mathematical model
Abstract How to represent a human face pattern? While it is presented in a continuous way in human visual system, computers often store and process it in a discrete manner with 2D arrays of pixels. The authors attempt to learn a continuous surface representation for face image with explicit function...
Główni autorzy: | Liping Zhang, Weijun Li, Linjun Sun, Lina Yu, Xin Ning, Xiaoli Dong |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
Wiley
2024-02-01
|
Seria: | CAAI Transactions on Intelligence Technology |
Hasła przedmiotowe: | |
Dostęp online: | https://doi.org/10.1049/cit2.12284 |
Podobne zapisy
-
A Review of Face Recognition Technology
od: Lixiang Li, i wsp.
Wydane: (2020-01-01) -
Understanding of facial features in face perception: insights from deep convolutional neural networks
od: Qianqian Zhang, i wsp.
Wydane: (2024-04-01) -
MATHEMATICS LEARNING PROCESS AND RESULTS OF ELEMENTARY SCHOOL STUDENTS IN LIMITED FACE-TO-FACE LEARNING
od: Ariani Haffidah Lestari, i wsp.
Wydane: (2023-04-01) -
A Systematic Review of CNN Architectures, Databases, Performance Metrics, and Applications in Face Recognition
od: Andisani Nemavhola, i wsp.
Wydane: (2025-02-01) -
SeqFace: Learning discriminative features by using face sequences
od: Wei Hu, i wsp.
Wydane: (2021-09-01)