Learning to represent 2D human face with mathematical model
Abstract How to represent a human face pattern? While it is presented in a continuous way in human visual system, computers often store and process it in a discrete manner with 2D arrays of pixels. The authors attempt to learn a continuous surface representation for face image with explicit function...
Автори: | Liping Zhang, Weijun Li, Linjun Sun, Lina Yu, Xin Ning, Xiaoli Dong |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Wiley
2024-02-01
|
Серія: | CAAI Transactions on Intelligence Technology |
Предмети: | |
Онлайн доступ: | https://doi.org/10.1049/cit2.12284 |
Схожі ресурси
Схожі ресурси
-
A Review of Face Recognition Technology
за авторством: Lixiang Li, та інші
Опубліковано: (2020-01-01) -
Understanding of facial features in face perception: insights from deep convolutional neural networks
за авторством: Qianqian Zhang, та інші
Опубліковано: (2024-04-01) -
MATHEMATICS LEARNING PROCESS AND RESULTS OF ELEMENTARY SCHOOL STUDENTS IN LIMITED FACE-TO-FACE LEARNING
за авторством: Ariani Haffidah Lestari, та інші
Опубліковано: (2023-04-01) -
A Systematic Review of CNN Architectures, Databases, Performance Metrics, and Applications in Face Recognition
за авторством: Andisani Nemavhola, та інші
Опубліковано: (2025-02-01) -
SeqFace: Learning discriminative features by using face sequences
за авторством: Wei Hu, та інші
Опубліковано: (2021-09-01)