Impact of Atmospheric Correction Methods Parametrization on Soil Organic Carbon Estimation Based on Hyperion Hyperspectral Data
Visible Near infrared and Shortwave Infrared (VNIR/SWIR, 400–2500 nm) remote sensing data is becoming a tool for topsoil properties mapping, bringing spatial information for environmental modeling and land use management. These topsoil properties estimates are based on regression models, linking a k...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-10-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/14/20/5117 |
_version_ | 1797470068731281408 |
---|---|
author | Prajwal Mruthyunjaya Amba Shetty Pruthviraj Umesh Cécile Gomez |
author_facet | Prajwal Mruthyunjaya Amba Shetty Pruthviraj Umesh Cécile Gomez |
author_sort | Prajwal Mruthyunjaya |
collection | DOAJ |
description | Visible Near infrared and Shortwave Infrared (VNIR/SWIR, 400–2500 nm) remote sensing data is becoming a tool for topsoil properties mapping, bringing spatial information for environmental modeling and land use management. These topsoil properties estimates are based on regression models, linking a key topsoil property to VNIR/SWIR reflectance data. Therefore, the regression model’s performances depend on the quality of both topsoil property analysis (measured on laboratory over-ground soil samples) and Bottom-of-Atmosphere (BOA) VNIR/SWIR reflectance which are retrieved from Top-Of-Atmosphere radiance using atmospheric correction (AC) methods. This paper examines the sensitivity of soil organic carbon (SOC) estimation to BOA images depending on two parameters used in AC methods: aerosol optical depth (AOD) in the FLAASH (Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes) method and water vapor (WV) in the ATCOR (ATmospheric CORrection) method. This work was based on Earth Observing-1 Hyperion Hyperspectral data acquired over a cultivated area in Australia in 2006. Hyperion radiance data were converted to BOA reflectance using seven values of AOD (from 0.2 to 1.4) and six values of WV (from 0.4 to 5 cm), in FLAASH and ATCOR, respectively. Then a Partial Least Squares regression (PLSR) model was built from each Hyperion BOA data to estimate SOC over bare soil pixels. This study demonstrated that the PLSR models were insensitive to the AOD variation used in the FLAASH method, with R<sup>2</sup><sub>cv</sub> and RMSE<sub>cv</sub> of 0.79 and 0.4%, respectively. The PLSR models were slightly sensitive to the WV variation used in the ATCOR method, with R<sup>2</sup><sub>cv</sub> ranging from 0.72 to 0.79 and RMSE<sub>cv</sub> ranging from 0.41 to 0.47. Regardless of the AOD values, the PLSR model based on the best parametrization of the ATCOR model provided similar SOC prediction accuracy to PLSR models using the FLAASH method. Variation in AOD using the FLAASH method did not impact the identification of bare soil pixels coverage which corresponded to 82.35% of the study area, while a variation in WV using the ATCOR method provided a variation of bare soil pixels coverage from 75.04 to 84.04%. Therefore, this work recommends (1) the use of the FLAASH AC method to provide BOA reflectance values from Earth Observing-1 Hyperion Hyperspectral data before SOC mapping or (2) a careful selection of the WV parameter when using ATCOR. |
first_indexed | 2024-03-09T19:31:35Z |
format | Article |
id | doaj.art-4f6482e90d144191aa88816682e29512 |
institution | Directory Open Access Journal |
issn | 2072-4292 |
language | English |
last_indexed | 2024-03-09T19:31:35Z |
publishDate | 2022-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Remote Sensing |
spelling | doaj.art-4f6482e90d144191aa88816682e295122023-11-24T02:19:29ZengMDPI AGRemote Sensing2072-42922022-10-011420511710.3390/rs14205117Impact of Atmospheric Correction Methods Parametrization on Soil Organic Carbon Estimation Based on Hyperion Hyperspectral DataPrajwal Mruthyunjaya0Amba Shetty1Pruthviraj Umesh2Cécile Gomez3Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal 575025, IndiaDepartment of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal 575025, IndiaDepartment of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal 575025, IndiaIRD, UMR LISAH (INRA-IRD-SupAgro), 34060 Montpellier, FranceVisible Near infrared and Shortwave Infrared (VNIR/SWIR, 400–2500 nm) remote sensing data is becoming a tool for topsoil properties mapping, bringing spatial information for environmental modeling and land use management. These topsoil properties estimates are based on regression models, linking a key topsoil property to VNIR/SWIR reflectance data. Therefore, the regression model’s performances depend on the quality of both topsoil property analysis (measured on laboratory over-ground soil samples) and Bottom-of-Atmosphere (BOA) VNIR/SWIR reflectance which are retrieved from Top-Of-Atmosphere radiance using atmospheric correction (AC) methods. This paper examines the sensitivity of soil organic carbon (SOC) estimation to BOA images depending on two parameters used in AC methods: aerosol optical depth (AOD) in the FLAASH (Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes) method and water vapor (WV) in the ATCOR (ATmospheric CORrection) method. This work was based on Earth Observing-1 Hyperion Hyperspectral data acquired over a cultivated area in Australia in 2006. Hyperion radiance data were converted to BOA reflectance using seven values of AOD (from 0.2 to 1.4) and six values of WV (from 0.4 to 5 cm), in FLAASH and ATCOR, respectively. Then a Partial Least Squares regression (PLSR) model was built from each Hyperion BOA data to estimate SOC over bare soil pixels. This study demonstrated that the PLSR models were insensitive to the AOD variation used in the FLAASH method, with R<sup>2</sup><sub>cv</sub> and RMSE<sub>cv</sub> of 0.79 and 0.4%, respectively. The PLSR models were slightly sensitive to the WV variation used in the ATCOR method, with R<sup>2</sup><sub>cv</sub> ranging from 0.72 to 0.79 and RMSE<sub>cv</sub> ranging from 0.41 to 0.47. Regardless of the AOD values, the PLSR model based on the best parametrization of the ATCOR model provided similar SOC prediction accuracy to PLSR models using the FLAASH method. Variation in AOD using the FLAASH method did not impact the identification of bare soil pixels coverage which corresponded to 82.35% of the study area, while a variation in WV using the ATCOR method provided a variation of bare soil pixels coverage from 75.04 to 84.04%. Therefore, this work recommends (1) the use of the FLAASH AC method to provide BOA reflectance values from Earth Observing-1 Hyperion Hyperspectral data before SOC mapping or (2) a careful selection of the WV parameter when using ATCOR.https://www.mdpi.com/2072-4292/14/20/5117Hyperionhyperspectral imageryatmospheric correctionssoil organic carbonATCORFLAASH |
spellingShingle | Prajwal Mruthyunjaya Amba Shetty Pruthviraj Umesh Cécile Gomez Impact of Atmospheric Correction Methods Parametrization on Soil Organic Carbon Estimation Based on Hyperion Hyperspectral Data Remote Sensing Hyperion hyperspectral imagery atmospheric corrections soil organic carbon ATCOR FLAASH |
title | Impact of Atmospheric Correction Methods Parametrization on Soil Organic Carbon Estimation Based on Hyperion Hyperspectral Data |
title_full | Impact of Atmospheric Correction Methods Parametrization on Soil Organic Carbon Estimation Based on Hyperion Hyperspectral Data |
title_fullStr | Impact of Atmospheric Correction Methods Parametrization on Soil Organic Carbon Estimation Based on Hyperion Hyperspectral Data |
title_full_unstemmed | Impact of Atmospheric Correction Methods Parametrization on Soil Organic Carbon Estimation Based on Hyperion Hyperspectral Data |
title_short | Impact of Atmospheric Correction Methods Parametrization on Soil Organic Carbon Estimation Based on Hyperion Hyperspectral Data |
title_sort | impact of atmospheric correction methods parametrization on soil organic carbon estimation based on hyperion hyperspectral data |
topic | Hyperion hyperspectral imagery atmospheric corrections soil organic carbon ATCOR FLAASH |
url | https://www.mdpi.com/2072-4292/14/20/5117 |
work_keys_str_mv | AT prajwalmruthyunjaya impactofatmosphericcorrectionmethodsparametrizationonsoilorganiccarbonestimationbasedonhyperionhyperspectraldata AT ambashetty impactofatmosphericcorrectionmethodsparametrizationonsoilorganiccarbonestimationbasedonhyperionhyperspectraldata AT pruthvirajumesh impactofatmosphericcorrectionmethodsparametrizationonsoilorganiccarbonestimationbasedonhyperionhyperspectraldata AT cecilegomez impactofatmosphericcorrectionmethodsparametrizationonsoilorganiccarbonestimationbasedonhyperionhyperspectraldata |