Summary: | We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS _2 are obtained utilizing a 5 fC (∼3 × 10 ^4 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ∼50 nm rad. The transverse and longitudinal coherence length is ∼11 and ∼2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ∼100 fs (rms). The temporal resolution is demonstrated by observing the evolution of Bragg and superlattice peaks of 1T-TaS _2 following an 800 nm optical pump and was found to be 130 fs. Our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.
|