CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A
The mass distribution of dense cores is a potential key to understanding the process of star formation. Applying dendrogram analysis to the CARMA-NRO Orion C ^18 O ( J = 1–0) data, we identify 2342 dense cores, about 22% of which have virial ratios smaller than 2 and can be classified as gravitation...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2023-01-01
|
Series: | The Astrophysical Journal Supplement Series |
Subjects: | |
Online Access: | https://doi.org/10.3847/1538-4365/aca4d4 |
_version_ | 1827827797161148416 |
---|---|
author | Hideaki Takemura Fumitaka Nakamura Héctor G. Arce Nicola Schneider Volker Ossenkopf-Okada Shuo Kong Shun Ishii Kazuhito Dobashi Tomomi Shimoikura Patricio Sanhueza Takashi Tsukagoshi Paolo Padoan Ralf S. Klessen Paul. F. Goldsmith Blakesley Burkhart Dariusz C. Lis Álvaro Sánchez-Monge Yoshito Shimajiri Ryohei Kawabe |
author_facet | Hideaki Takemura Fumitaka Nakamura Héctor G. Arce Nicola Schneider Volker Ossenkopf-Okada Shuo Kong Shun Ishii Kazuhito Dobashi Tomomi Shimoikura Patricio Sanhueza Takashi Tsukagoshi Paolo Padoan Ralf S. Klessen Paul. F. Goldsmith Blakesley Burkhart Dariusz C. Lis Álvaro Sánchez-Monge Yoshito Shimajiri Ryohei Kawabe |
author_sort | Hideaki Takemura |
collection | DOAJ |
description | The mass distribution of dense cores is a potential key to understanding the process of star formation. Applying dendrogram analysis to the CARMA-NRO Orion C ^18 O ( J = 1–0) data, we identify 2342 dense cores, about 22% of which have virial ratios smaller than 2 and can be classified as gravitationally bound cores. The derived core mass function (CMF) for bound starless cores that are not associate with protostars has a slope similar to Salpeter’s initial mass function (IMF) for the mass range above 1 M _⊙ , with a peak at ∼0.1 M _⊙ . We divide the cloud into four parts based on decl., OMC-1/2/3, OMC-4/5, L1641N/V380 Ori, and L1641C, and derive the CMFs in these regions. We find that starless cores with masses greater than 10 M _⊙ exist only in OMC-1/2/3, whereas the CMFs in OMC-4/5, L1641N, and L1641C are truncated at around 5–10 M _⊙ . From the number ratio of bound starless cores and Class II objects in each subregion, the lifetime of bound starless cores is estimated to be 5–30 freefall times, consistent with previous studies for other regions. In addition, we discuss core growth by mass accretion from the surrounding cloud material to explain the coincidence of peak masses between IMFs and CMFs. The mass accretion rate required for doubling the core mass within a core lifetime is larger than that of Bondi–Hoyle accretion by a factor of order 2. This implies that more dynamical accretion processes are required to grow cores. |
first_indexed | 2024-03-12T03:37:39Z |
format | Article |
id | doaj.art-4f7d9fce85aa4570970621176b98ffa4 |
institution | Directory Open Access Journal |
issn | 0067-0049 |
language | English |
last_indexed | 2024-03-12T03:37:39Z |
publishDate | 2023-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | The Astrophysical Journal Supplement Series |
spelling | doaj.art-4f7d9fce85aa4570970621176b98ffa42023-09-03T13:08:02ZengIOP PublishingThe Astrophysical Journal Supplement Series0067-00492023-01-0126423510.3847/1538-4365/aca4d4CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion AHideaki Takemura0https://orcid.org/0000-0003-2902-2038Fumitaka Nakamura1https://orcid.org/0000-0001-5431-2294Héctor G. Arce2https://orcid.org/0000-0001-5653-7817Nicola Schneider3https://orcid.org/0000-0003-3485-6678Volker Ossenkopf-Okada4https://orcid.org/0000-0002-8351-3877Shuo Kong5https://orcid.org/0000-0002-8469-2029Shun Ishii6https://orcid.org/0000-0001-8337-4961Kazuhito Dobashi7https://orcid.org/0000-0001-8058-8577Tomomi Shimoikura8https://orcid.org/0000-0002-1054-3004Patricio Sanhueza9https://orcid.org/0000-0002-7125-7685Takashi Tsukagoshi10https://orcid.org/0000-0002-6034-2892Paolo Padoan11https://orcid.org/0000-0002-5055-5800Ralf S. Klessen12https://orcid.org/0000-0002-0560-3172Paul. F. Goldsmith13https://orcid.org/0000-0002-6622-8396Blakesley Burkhart14https://orcid.org/0000-0001-5817-5944Dariusz C. Lis15https://orcid.org/0000-0002-0500-4700Álvaro Sánchez-Monge16https://orcid.org/0000-0002-3078-9482Yoshito Shimajiri17https://orcid.org/0000-0001-9368-3143Ryohei Kawabe18https://orcid.org/0000-0002-8049-7525The Graduate University for Advanced Studies (SOKENDAI) , 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan; National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanThe Graduate University for Advanced Studies (SOKENDAI) , 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan; National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; Department of Astronomy, The University of Tokyo , Hongo, Tokyo 113-0033, JapanDepartment of Astronomy, Yale University , New Haven, CT 06511, USAI. Physik. Institut, University of Cologne , Zülpicher Str. 77, D-50937 Cologne, GermanyI. Physik. Institut, University of Cologne , Zülpicher Str. 77, D-50937 Cologne, GermanyDepartment of Astronomy, Yale University , New Haven, CT 06511, USA; Steward Observatory, University of Arizona , Tucson, AZ 85719, USANational Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanTokyo Gakugei University , Koganei, Tokyo, 184-8501, JapanOtsuma Women's University , Chiyoda-ku, Tokyo, 102-8357, JapanThe Graduate University for Advanced Studies (SOKENDAI) , 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan; National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanNational Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanInstitut de Ciéncies del Cosmos, Universitat de Barcelona , IEEC-UB, Martí i Franqués 1, E-08028 Barcelona, Spain; ICREA , Pg. Lluís Companys 23, E-08010 Barcelona, SpainUniversität Heidelberg , Zentrum für Astronomie, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany; Universität Heidelberg , Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, INF 205, D-69120 Heidelberg, GermanyJet Propulsion Laboratory, California Institute of Technology , 4800 Oak Grove Dr., Pasadena, CA 91109, USADepartment of Physics and Astronomy, Rutgers University , 136 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Center for Computational Astrophysics, Flatiron Institute , 162 Fifth Ave., New York, NY 10010, USAJet Propulsion Laboratory, California Institute of Technology , 4800 Oak Grove Dr., Pasadena, CA 91109, USAI. Physikalisches Institut, Universität zu Köln , Zülpicher Str. 77, D-50937 Köln, GermanyNational Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanThe Graduate University for Advanced Studies (SOKENDAI) , 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan; National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanThe mass distribution of dense cores is a potential key to understanding the process of star formation. Applying dendrogram analysis to the CARMA-NRO Orion C ^18 O ( J = 1–0) data, we identify 2342 dense cores, about 22% of which have virial ratios smaller than 2 and can be classified as gravitationally bound cores. The derived core mass function (CMF) for bound starless cores that are not associate with protostars has a slope similar to Salpeter’s initial mass function (IMF) for the mass range above 1 M _⊙ , with a peak at ∼0.1 M _⊙ . We divide the cloud into four parts based on decl., OMC-1/2/3, OMC-4/5, L1641N/V380 Ori, and L1641C, and derive the CMFs in these regions. We find that starless cores with masses greater than 10 M _⊙ exist only in OMC-1/2/3, whereas the CMFs in OMC-4/5, L1641N, and L1641C are truncated at around 5–10 M _⊙ . From the number ratio of bound starless cores and Class II objects in each subregion, the lifetime of bound starless cores is estimated to be 5–30 freefall times, consistent with previous studies for other regions. In addition, we discuss core growth by mass accretion from the surrounding cloud material to explain the coincidence of peak masses between IMFs and CMFs. The mass accretion rate required for doubling the core mass within a core lifetime is larger than that of Bondi–Hoyle accretion by a factor of order 2. This implies that more dynamical accretion processes are required to grow cores.https://doi.org/10.3847/1538-4365/aca4d4Star formationInterstellar mediumMolecular cloudsProtostars |
spellingShingle | Hideaki Takemura Fumitaka Nakamura Héctor G. Arce Nicola Schneider Volker Ossenkopf-Okada Shuo Kong Shun Ishii Kazuhito Dobashi Tomomi Shimoikura Patricio Sanhueza Takashi Tsukagoshi Paolo Padoan Ralf S. Klessen Paul. F. Goldsmith Blakesley Burkhart Dariusz C. Lis Álvaro Sánchez-Monge Yoshito Shimajiri Ryohei Kawabe CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A The Astrophysical Journal Supplement Series Star formation Interstellar medium Molecular clouds Protostars |
title | CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A |
title_full | CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A |
title_fullStr | CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A |
title_full_unstemmed | CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A |
title_short | CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A |
title_sort | carma nro orion survey unbiased survey of dense cores and core mass functions in orion a |
topic | Star formation Interstellar medium Molecular clouds Protostars |
url | https://doi.org/10.3847/1538-4365/aca4d4 |
work_keys_str_mv | AT hideakitakemura carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT fumitakanakamura carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT hectorgarce carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT nicolaschneider carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT volkerossenkopfokada carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT shuokong carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT shunishii carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT kazuhitodobashi carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT tomomishimoikura carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT patriciosanhueza carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT takashitsukagoshi carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT paolopadoan carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT ralfsklessen carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT paulfgoldsmith carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT blakesleyburkhart carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT dariuszclis carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT alvarosanchezmonge carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT yoshitoshimajiri carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona AT ryoheikawabe carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona |