CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A

The mass distribution of dense cores is a potential key to understanding the process of star formation. Applying dendrogram analysis to the CARMA-NRO Orion C ^18 O ( J = 1–0) data, we identify 2342 dense cores, about 22% of which have virial ratios smaller than 2 and can be classified as gravitation...

Full description

Bibliographic Details
Main Authors: Hideaki Takemura, Fumitaka Nakamura, Héctor G. Arce, Nicola Schneider, Volker Ossenkopf-Okada, Shuo Kong, Shun Ishii, Kazuhito Dobashi, Tomomi Shimoikura, Patricio Sanhueza, Takashi Tsukagoshi, Paolo Padoan, Ralf S. Klessen, Paul. F. Goldsmith, Blakesley Burkhart, Dariusz C. Lis, Álvaro Sánchez-Monge, Yoshito Shimajiri, Ryohei Kawabe
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal Supplement Series
Subjects:
Online Access:https://doi.org/10.3847/1538-4365/aca4d4
_version_ 1827827797161148416
author Hideaki Takemura
Fumitaka Nakamura
Héctor G. Arce
Nicola Schneider
Volker Ossenkopf-Okada
Shuo Kong
Shun Ishii
Kazuhito Dobashi
Tomomi Shimoikura
Patricio Sanhueza
Takashi Tsukagoshi
Paolo Padoan
Ralf S. Klessen
Paul. F. Goldsmith
Blakesley Burkhart
Dariusz C. Lis
Álvaro Sánchez-Monge
Yoshito Shimajiri
Ryohei Kawabe
author_facet Hideaki Takemura
Fumitaka Nakamura
Héctor G. Arce
Nicola Schneider
Volker Ossenkopf-Okada
Shuo Kong
Shun Ishii
Kazuhito Dobashi
Tomomi Shimoikura
Patricio Sanhueza
Takashi Tsukagoshi
Paolo Padoan
Ralf S. Klessen
Paul. F. Goldsmith
Blakesley Burkhart
Dariusz C. Lis
Álvaro Sánchez-Monge
Yoshito Shimajiri
Ryohei Kawabe
author_sort Hideaki Takemura
collection DOAJ
description The mass distribution of dense cores is a potential key to understanding the process of star formation. Applying dendrogram analysis to the CARMA-NRO Orion C ^18 O ( J = 1–0) data, we identify 2342 dense cores, about 22% of which have virial ratios smaller than 2 and can be classified as gravitationally bound cores. The derived core mass function (CMF) for bound starless cores that are not associate with protostars has a slope similar to Salpeter’s initial mass function (IMF) for the mass range above 1 M _⊙ , with a peak at ∼0.1 M _⊙ . We divide the cloud into four parts based on decl., OMC-1/2/3, OMC-4/5, L1641N/V380 Ori, and L1641C, and derive the CMFs in these regions. We find that starless cores with masses greater than 10 M _⊙ exist only in OMC-1/2/3, whereas the CMFs in OMC-4/5, L1641N, and L1641C are truncated at around 5–10 M _⊙ . From the number ratio of bound starless cores and Class II objects in each subregion, the lifetime of bound starless cores is estimated to be 5–30 freefall times, consistent with previous studies for other regions. In addition, we discuss core growth by mass accretion from the surrounding cloud material to explain the coincidence of peak masses between IMFs and CMFs. The mass accretion rate required for doubling the core mass within a core lifetime is larger than that of Bondi–Hoyle accretion by a factor of order 2. This implies that more dynamical accretion processes are required to grow cores.
first_indexed 2024-03-12T03:37:39Z
format Article
id doaj.art-4f7d9fce85aa4570970621176b98ffa4
institution Directory Open Access Journal
issn 0067-0049
language English
last_indexed 2024-03-12T03:37:39Z
publishDate 2023-01-01
publisher IOP Publishing
record_format Article
series The Astrophysical Journal Supplement Series
spelling doaj.art-4f7d9fce85aa4570970621176b98ffa42023-09-03T13:08:02ZengIOP PublishingThe Astrophysical Journal Supplement Series0067-00492023-01-0126423510.3847/1538-4365/aca4d4CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion AHideaki Takemura0https://orcid.org/0000-0003-2902-2038Fumitaka Nakamura1https://orcid.org/0000-0001-5431-2294Héctor G. Arce2https://orcid.org/0000-0001-5653-7817Nicola Schneider3https://orcid.org/0000-0003-3485-6678Volker Ossenkopf-Okada4https://orcid.org/0000-0002-8351-3877Shuo Kong5https://orcid.org/0000-0002-8469-2029Shun Ishii6https://orcid.org/0000-0001-8337-4961Kazuhito Dobashi7https://orcid.org/0000-0001-8058-8577Tomomi Shimoikura8https://orcid.org/0000-0002-1054-3004Patricio Sanhueza9https://orcid.org/0000-0002-7125-7685Takashi Tsukagoshi10https://orcid.org/0000-0002-6034-2892Paolo Padoan11https://orcid.org/0000-0002-5055-5800Ralf S. Klessen12https://orcid.org/0000-0002-0560-3172Paul. F. Goldsmith13https://orcid.org/0000-0002-6622-8396Blakesley Burkhart14https://orcid.org/0000-0001-5817-5944Dariusz C. Lis15https://orcid.org/0000-0002-0500-4700Álvaro Sánchez-Monge16https://orcid.org/0000-0002-3078-9482Yoshito Shimajiri17https://orcid.org/0000-0001-9368-3143Ryohei Kawabe18https://orcid.org/0000-0002-8049-7525The Graduate University for Advanced Studies (SOKENDAI) , 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan; National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanThe Graduate University for Advanced Studies (SOKENDAI) , 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan; National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; Department of Astronomy, The University of Tokyo , Hongo, Tokyo 113-0033, JapanDepartment of Astronomy, Yale University , New Haven, CT 06511, USAI. Physik. Institut, University of Cologne , Zülpicher Str. 77, D-50937 Cologne, GermanyI. Physik. Institut, University of Cologne , Zülpicher Str. 77, D-50937 Cologne, GermanyDepartment of Astronomy, Yale University , New Haven, CT 06511, USA; Steward Observatory, University of Arizona , Tucson, AZ 85719, USANational Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanTokyo Gakugei University , Koganei, Tokyo, 184-8501, JapanOtsuma Women's University , Chiyoda-ku, Tokyo, 102-8357, JapanThe Graduate University for Advanced Studies (SOKENDAI) , 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan; National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanNational Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanInstitut de Ciéncies del Cosmos, Universitat de Barcelona , IEEC-UB, Martí i Franqués 1, E-08028 Barcelona, Spain; ICREA , Pg. Lluís Companys 23, E-08010 Barcelona, SpainUniversität Heidelberg , Zentrum für Astronomie, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany; Universität Heidelberg , Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, INF 205, D-69120 Heidelberg, GermanyJet Propulsion Laboratory, California Institute of Technology , 4800 Oak Grove Dr., Pasadena, CA 91109, USADepartment of Physics and Astronomy, Rutgers University , 136 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Center for Computational Astrophysics, Flatiron Institute , 162 Fifth Ave., New York, NY 10010, USAJet Propulsion Laboratory, California Institute of Technology , 4800 Oak Grove Dr., Pasadena, CA 91109, USAI. Physikalisches Institut, Universität zu Köln , Zülpicher Str. 77, D-50937 Köln, GermanyNational Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanThe Graduate University for Advanced Studies (SOKENDAI) , 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan; National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588, JapanThe mass distribution of dense cores is a potential key to understanding the process of star formation. Applying dendrogram analysis to the CARMA-NRO Orion C ^18 O ( J = 1–0) data, we identify 2342 dense cores, about 22% of which have virial ratios smaller than 2 and can be classified as gravitationally bound cores. The derived core mass function (CMF) for bound starless cores that are not associate with protostars has a slope similar to Salpeter’s initial mass function (IMF) for the mass range above 1 M _⊙ , with a peak at ∼0.1 M _⊙ . We divide the cloud into four parts based on decl., OMC-1/2/3, OMC-4/5, L1641N/V380 Ori, and L1641C, and derive the CMFs in these regions. We find that starless cores with masses greater than 10 M _⊙ exist only in OMC-1/2/3, whereas the CMFs in OMC-4/5, L1641N, and L1641C are truncated at around 5–10 M _⊙ . From the number ratio of bound starless cores and Class II objects in each subregion, the lifetime of bound starless cores is estimated to be 5–30 freefall times, consistent with previous studies for other regions. In addition, we discuss core growth by mass accretion from the surrounding cloud material to explain the coincidence of peak masses between IMFs and CMFs. The mass accretion rate required for doubling the core mass within a core lifetime is larger than that of Bondi–Hoyle accretion by a factor of order 2. This implies that more dynamical accretion processes are required to grow cores.https://doi.org/10.3847/1538-4365/aca4d4Star formationInterstellar mediumMolecular cloudsProtostars
spellingShingle Hideaki Takemura
Fumitaka Nakamura
Héctor G. Arce
Nicola Schneider
Volker Ossenkopf-Okada
Shuo Kong
Shun Ishii
Kazuhito Dobashi
Tomomi Shimoikura
Patricio Sanhueza
Takashi Tsukagoshi
Paolo Padoan
Ralf S. Klessen
Paul. F. Goldsmith
Blakesley Burkhart
Dariusz C. Lis
Álvaro Sánchez-Monge
Yoshito Shimajiri
Ryohei Kawabe
CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A
The Astrophysical Journal Supplement Series
Star formation
Interstellar medium
Molecular clouds
Protostars
title CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A
title_full CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A
title_fullStr CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A
title_full_unstemmed CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A
title_short CARMA-NRO Orion Survey: Unbiased Survey of Dense Cores and Core Mass Functions in Orion A
title_sort carma nro orion survey unbiased survey of dense cores and core mass functions in orion a
topic Star formation
Interstellar medium
Molecular clouds
Protostars
url https://doi.org/10.3847/1538-4365/aca4d4
work_keys_str_mv AT hideakitakemura carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT fumitakanakamura carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT hectorgarce carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT nicolaschneider carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT volkerossenkopfokada carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT shuokong carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT shunishii carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT kazuhitodobashi carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT tomomishimoikura carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT patriciosanhueza carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT takashitsukagoshi carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT paolopadoan carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT ralfsklessen carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT paulfgoldsmith carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT blakesleyburkhart carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT dariuszclis carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT alvarosanchezmonge carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT yoshitoshimajiri carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona
AT ryoheikawabe carmanroorionsurveyunbiasedsurveyofdensecoresandcoremassfunctionsinoriona