Covariant second variation for first order Lagrangians on fibered manifolds I: Generalized Jacobi fields

The second variation of a (first–order) Lagrangian theory is revisited and the notion of generalized Jacobi equation is considered from a systematic and covariant viewpoint. The role and significance of various integrations by parts are pointed out. Examples of application are given in Mechanics an...

Full description

Bibliographic Details
Main Authors: B. CASCIARO, M. FRANCAVIGLIA
Format: Article
Language:English
Published: Sapienza Università Editrice 1996-05-01
Series:Rendiconti di Matematica e delle Sue Applicazioni
Subjects:
Online Access:https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1996(2)/233-264.pdf
_version_ 1797821692402204672
author B. CASCIARO
M. FRANCAVIGLIA
author_facet B. CASCIARO
M. FRANCAVIGLIA
author_sort B. CASCIARO
collection DOAJ
description The second variation of a (first–order) Lagrangian theory is revisited and the notion of generalized Jacobi equation is considered from a systematic and covariant viewpoint. The role and significance of various integrations by parts are pointed out. Examples of application are given in Mechanics and in the theory of generalized harmonic Lagrangians.
first_indexed 2024-03-13T09:57:33Z
format Article
id doaj.art-4f9b6ae11835408b884183ebcb8e7c06
institution Directory Open Access Journal
issn 1120-7183
2532-3350
language English
last_indexed 2024-03-13T09:57:33Z
publishDate 1996-05-01
publisher Sapienza Università Editrice
record_format Article
series Rendiconti di Matematica e delle Sue Applicazioni
spelling doaj.art-4f9b6ae11835408b884183ebcb8e7c062023-05-23T15:04:16ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33501996-05-01162233264Covariant second variation for first order Lagrangians on fibered manifolds I: Generalized Jacobi fieldsB. CASCIARO0M. FRANCAVIGLIA1Dipartimento di Matematica – Università di Bari – Via Orabona 5 – 75125 Bari – ItalyIstituto di Fisica Matematica “J.–L. Lagrange” – Università di Torino – Via C. Alberto 10 – 10123 Torino – ItalyThe second variation of a (first–order) Lagrangian theory is revisited and the notion of generalized Jacobi equation is considered from a systematic and covariant viewpoint. The role and significance of various integrations by parts are pointed out. Examples of application are given in Mechanics and in the theory of generalized harmonic Lagrangians.https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1996(2)/233-264.pdfcalculus of variationsjacobi fields
spellingShingle B. CASCIARO
M. FRANCAVIGLIA
Covariant second variation for first order Lagrangians on fibered manifolds I: Generalized Jacobi fields
Rendiconti di Matematica e delle Sue Applicazioni
calculus of variations
jacobi fields
title Covariant second variation for first order Lagrangians on fibered manifolds I: Generalized Jacobi fields
title_full Covariant second variation for first order Lagrangians on fibered manifolds I: Generalized Jacobi fields
title_fullStr Covariant second variation for first order Lagrangians on fibered manifolds I: Generalized Jacobi fields
title_full_unstemmed Covariant second variation for first order Lagrangians on fibered manifolds I: Generalized Jacobi fields
title_short Covariant second variation for first order Lagrangians on fibered manifolds I: Generalized Jacobi fields
title_sort covariant second variation for first order lagrangians on fibered manifolds i generalized jacobi fields
topic calculus of variations
jacobi fields
url https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1996(2)/233-264.pdf
work_keys_str_mv AT bcasciaro covariantsecondvariationforfirstorderlagrangiansonfiberedmanifoldsigeneralizedjacobifields
AT mfrancaviglia covariantsecondvariationforfirstorderlagrangiansonfiberedmanifoldsigeneralizedjacobifields