Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing
Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (60...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
KeAi Communications Co., Ltd.
2024-06-01
|
Series: | Bioactive Materials |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2452199X24000641 |
_version_ | 1827149915431632896 |
---|---|
author | Julia Simińska-Stanny Lise Nicolas Adam Chafai Hafez Jafari Maryam Hajiabbas Gianina Dodi Ioannis Gardikiotis Christine Delporte Lei Nie Daria Podstawczyk Amin Shavandi |
author_facet | Julia Simińska-Stanny Lise Nicolas Adam Chafai Hafez Jafari Maryam Hajiabbas Gianina Dodi Ioannis Gardikiotis Christine Delporte Lei Nie Daria Podstawczyk Amin Shavandi |
author_sort | Julia Simińska-Stanny |
collection | DOAJ |
description | Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600–1300 μm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures. |
first_indexed | 2024-03-07T14:28:32Z |
format | Article |
id | doaj.art-4f9b919f2c1a428195096880278085bc |
institution | Directory Open Access Journal |
issn | 2452-199X |
language | English |
last_indexed | 2025-03-20T21:25:46Z |
publishDate | 2024-06-01 |
publisher | KeAi Communications Co., Ltd. |
record_format | Article |
series | Bioactive Materials |
spelling | doaj.art-4f9b919f2c1a428195096880278085bc2024-08-12T04:31:08ZengKeAi Communications Co., Ltd.Bioactive Materials2452-199X2024-06-0136168184Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printingJulia Simińska-Stanny0Lise Nicolas1Adam Chafai2Hafez Jafari3Maryam Hajiabbas4Gianina Dodi5Ioannis Gardikiotis6Christine Delporte7Lei Nie8Daria Podstawczyk9Amin Shavandi10Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, BelgiumUniversité Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium; European School of Materials Science and Engineering, University of Lorraine, Nancy, FranceUniversité Libre de Bruxelles (ULB), Micro-milli Platform, Avenue F.D. Roosevelt, 50 - CP 165/67, 1050, Brussels, BelgiumUniversité Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, BelgiumUniversité Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium; Université Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, BelgiumFaculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, RomaniaAdvanced Research and Development Center for Experimental Medicine, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, RomaniaUniversité Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, BelgiumUniversité Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium; College of Life Science, Xinyang Normal University, Xinyang, China; Corresponding author.Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland; Corresponding author.Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium; Corresponding author.Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600–1300 μm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.http://www.sciencedirect.com/science/article/pii/S2452199X24000641 |
spellingShingle | Julia Simińska-Stanny Lise Nicolas Adam Chafai Hafez Jafari Maryam Hajiabbas Gianina Dodi Ioannis Gardikiotis Christine Delporte Lei Nie Daria Podstawczyk Amin Shavandi Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing Bioactive Materials |
title | Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing |
title_full | Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing |
title_fullStr | Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing |
title_full_unstemmed | Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing |
title_short | Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing |
title_sort | advanced peg tyramine biomaterial ink for precision engineering of perfusable and flexible small diameter vascular constructs via coaxial printing |
url | http://www.sciencedirect.com/science/article/pii/S2452199X24000641 |
work_keys_str_mv | AT juliasiminskastanny advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting AT lisenicolas advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting AT adamchafai advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting AT hafezjafari advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting AT maryamhajiabbas advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting AT gianinadodi advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting AT ioannisgardikiotis advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting AT christinedelporte advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting AT leinie advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting AT dariapodstawczyk advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting AT aminshavandi advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting |