Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing

Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (60...

Full description

Bibliographic Details
Main Authors: Julia Simińska-Stanny, Lise Nicolas, Adam Chafai, Hafez Jafari, Maryam Hajiabbas, Gianina Dodi, Ioannis Gardikiotis, Christine Delporte, Lei Nie, Daria Podstawczyk, Amin Shavandi
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2024-06-01
Series:Bioactive Materials
Online Access:http://www.sciencedirect.com/science/article/pii/S2452199X24000641
_version_ 1827149915431632896
author Julia Simińska-Stanny
Lise Nicolas
Adam Chafai
Hafez Jafari
Maryam Hajiabbas
Gianina Dodi
Ioannis Gardikiotis
Christine Delporte
Lei Nie
Daria Podstawczyk
Amin Shavandi
author_facet Julia Simińska-Stanny
Lise Nicolas
Adam Chafai
Hafez Jafari
Maryam Hajiabbas
Gianina Dodi
Ioannis Gardikiotis
Christine Delporte
Lei Nie
Daria Podstawczyk
Amin Shavandi
author_sort Julia Simińska-Stanny
collection DOAJ
description Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600–1300 μm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.
first_indexed 2024-03-07T14:28:32Z
format Article
id doaj.art-4f9b919f2c1a428195096880278085bc
institution Directory Open Access Journal
issn 2452-199X
language English
last_indexed 2025-03-20T21:25:46Z
publishDate 2024-06-01
publisher KeAi Communications Co., Ltd.
record_format Article
series Bioactive Materials
spelling doaj.art-4f9b919f2c1a428195096880278085bc2024-08-12T04:31:08ZengKeAi Communications Co., Ltd.Bioactive Materials2452-199X2024-06-0136168184Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printingJulia Simińska-Stanny0Lise Nicolas1Adam Chafai2Hafez Jafari3Maryam Hajiabbas4Gianina Dodi5Ioannis Gardikiotis6Christine Delporte7Lei Nie8Daria Podstawczyk9Amin Shavandi10Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, BelgiumUniversité Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium; European School of Materials Science and Engineering, University of Lorraine, Nancy, FranceUniversité Libre de Bruxelles (ULB), Micro-milli Platform, Avenue F.D. Roosevelt, 50 - CP 165/67, 1050, Brussels, BelgiumUniversité Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, BelgiumUniversité Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium; Université Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, BelgiumFaculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, RomaniaAdvanced Research and Development Center for Experimental Medicine, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, RomaniaUniversité Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, BelgiumUniversité Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium; College of Life Science, Xinyang Normal University, Xinyang, China; Corresponding author.Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland; Corresponding author.Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium; Corresponding author.Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600–1300 μm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.http://www.sciencedirect.com/science/article/pii/S2452199X24000641
spellingShingle Julia Simińska-Stanny
Lise Nicolas
Adam Chafai
Hafez Jafari
Maryam Hajiabbas
Gianina Dodi
Ioannis Gardikiotis
Christine Delporte
Lei Nie
Daria Podstawczyk
Amin Shavandi
Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing
Bioactive Materials
title Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing
title_full Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing
title_fullStr Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing
title_full_unstemmed Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing
title_short Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing
title_sort advanced peg tyramine biomaterial ink for precision engineering of perfusable and flexible small diameter vascular constructs via coaxial printing
url http://www.sciencedirect.com/science/article/pii/S2452199X24000641
work_keys_str_mv AT juliasiminskastanny advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting
AT lisenicolas advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting
AT adamchafai advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting
AT hafezjafari advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting
AT maryamhajiabbas advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting
AT gianinadodi advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting
AT ioannisgardikiotis advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting
AT christinedelporte advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting
AT leinie advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting
AT dariapodstawczyk advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting
AT aminshavandi advancedpegtyraminebiomaterialinkforprecisionengineeringofperfusableandflexiblesmalldiametervascularconstructsviacoaxialprinting