Curcumin-Loaded Mesoporous Silica Nanoparticles Dispersed in Thermo-Responsive Hydrogel as Potential Alzheimer Disease Therapy

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. Curcumin-loaded mesoporous silica nanoparticles (MSN-CCM) can overcome the drawbacks related to the free curcumin (CCM) clinical application, such as water insolubility and low bioavailabil...

Full description

Bibliographic Details
Main Authors: Tais de Cassia Ribeiro, Rafael Miguel Sábio, Marcela Tavares Luiz, Lucas Canto de Souza, Bruno Fonseca-Santos, Luis Carlos Cides da Silva, Márcia Carvalho de Abreu Fantini, Cleopatra da Silva Planeta, Marlus Chorilli
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Pharmaceutics
Subjects:
Online Access:https://www.mdpi.com/1999-4923/14/9/1976
Description
Summary:Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. Curcumin-loaded mesoporous silica nanoparticles (MSN-CCM) can overcome the drawbacks related to the free curcumin (CCM) clinical application, such as water insolubility and low bioavailability, besides acting over the main causes associated to AD. A thermo-responsive hydrogel is an interesting approach for facilitating the administration of the nanosystem via a nasal route, as well as for overcoming mucociliary clearance mechanisms. In light of this, MSN-CCM were dispersed in the hydrogel and evaluated through in vitro and in vivo assays. The MSNs and MSN-CCM were successfully characterized by physicochemical analysis and a high value of the CCM encapsulation efficiency (EE%, 87.70 ± 0.05) was achieved. The designed thermo-responsive hydrogel (HG) was characterized by rheology, texture profile analysis, and ex vivo mucoadhesion, showing excellent mechanical and mucoadhesive properties. Ex vivo permeation studies of MSN-CCM and HG@MSN-CCM showed high permeation values (12.46 ± 1.08 and 28.40 ± 1.88 μg cm<sup>−2</sup> of CCM, respectively) in porcine nasal mucosa. In vivo studies performed in a streptozotocin-induced AD model confirmed that HG@MSN-CCM reverted the cognitive deficit in mice, acting as a potential formulation in the treatment of AD.
ISSN:1999-4923