Summary: | In this paper, a new class of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>C</mi> <mo>,</mo> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-invex functions introduce and give nontrivial numerical examples which justify exist such type of functions. Also, we construct generalized convexity definitions (such as, <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>F</mi> <mo>,</mo> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-invexity, <i>C</i>-convex etc.). We consider Mond−Weir type fractional symmetric dual programs and derive duality results under <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>C</mi> <mo>,</mo> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-invexity assumptions. Our results generalize several known results in the literature.
|