Multiobjective Fractional Symmetric Duality in Mathematical Programming with (<i>C</i>,<i>G<sub>f</sub></i>)-Invexity Assumptions

In this paper, a new class of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>C</mi> <mo>,</mo> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow&g...

Full description

Bibliographic Details
Main Authors: Ramu Dubey, Lakshmi Narayan Mishra, Clemente Cesarano
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/8/3/97
_version_ 1830478906251018240
author Ramu Dubey
Lakshmi Narayan Mishra
Clemente Cesarano
author_facet Ramu Dubey
Lakshmi Narayan Mishra
Clemente Cesarano
author_sort Ramu Dubey
collection DOAJ
description In this paper, a new class of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>C</mi> <mo>,</mo> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-invex functions introduce and give nontrivial numerical examples which justify exist such type of functions. Also, we construct generalized convexity definitions (such as, <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>F</mi> <mo>,</mo> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-invexity, <i>C</i>-convex etc.). We consider Mond&#8722;Weir type fractional symmetric dual programs and derive duality results under <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>C</mi> <mo>,</mo> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-invexity assumptions. Our results generalize several known results in the literature.
first_indexed 2024-12-21T16:36:42Z
format Article
id doaj.art-4fbbc8487fe2456593e00daa180f3be1
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-12-21T16:36:42Z
publishDate 2019-08-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-4fbbc8487fe2456593e00daa180f3be12022-12-21T18:57:12ZengMDPI AGAxioms2075-16802019-08-01839710.3390/axioms8030097axioms8030097Multiobjective Fractional Symmetric Duality in Mathematical Programming with (<i>C</i>,<i>G<sub>f</sub></i>)-Invexity AssumptionsRamu Dubey0Lakshmi Narayan Mishra1Clemente Cesarano2Department of Mathematics, J.C. Bose University of Science and Technology, YMCA, Faridabad 121 006, IndiaDepartment of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Vellore 632 014, Tamil Nadu, IndiaSection of Mathematics, International Telematic University UNINETTUNO, C.so Vittorio Emanuele II, 3900186 Roma, ItalyIn this paper, a new class of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>C</mi> <mo>,</mo> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-invex functions introduce and give nontrivial numerical examples which justify exist such type of functions. Also, we construct generalized convexity definitions (such as, <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>F</mi> <mo>,</mo> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-invexity, <i>C</i>-convex etc.). We consider Mond&#8722;Weir type fractional symmetric dual programs and derive duality results under <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>C</mi> <mo>,</mo> <msub> <mi>G</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-invexity assumptions. Our results generalize several known results in the literature.https://www.mdpi.com/2075-1680/8/3/97symmetric dualitymultiobjectivefractional programming(<i>C</i>,<i>G<sub>f</sub></i>)-invexity
spellingShingle Ramu Dubey
Lakshmi Narayan Mishra
Clemente Cesarano
Multiobjective Fractional Symmetric Duality in Mathematical Programming with (<i>C</i>,<i>G<sub>f</sub></i>)-Invexity Assumptions
Axioms
symmetric duality
multiobjective
fractional programming
(<i>C</i>,<i>G<sub>f</sub></i>)-invexity
title Multiobjective Fractional Symmetric Duality in Mathematical Programming with (<i>C</i>,<i>G<sub>f</sub></i>)-Invexity Assumptions
title_full Multiobjective Fractional Symmetric Duality in Mathematical Programming with (<i>C</i>,<i>G<sub>f</sub></i>)-Invexity Assumptions
title_fullStr Multiobjective Fractional Symmetric Duality in Mathematical Programming with (<i>C</i>,<i>G<sub>f</sub></i>)-Invexity Assumptions
title_full_unstemmed Multiobjective Fractional Symmetric Duality in Mathematical Programming with (<i>C</i>,<i>G<sub>f</sub></i>)-Invexity Assumptions
title_short Multiobjective Fractional Symmetric Duality in Mathematical Programming with (<i>C</i>,<i>G<sub>f</sub></i>)-Invexity Assumptions
title_sort multiobjective fractional symmetric duality in mathematical programming with i c i i g sub f sub i invexity assumptions
topic symmetric duality
multiobjective
fractional programming
(<i>C</i>,<i>G<sub>f</sub></i>)-invexity
url https://www.mdpi.com/2075-1680/8/3/97
work_keys_str_mv AT ramudubey multiobjectivefractionalsymmetricdualityinmathematicalprogrammingwithiciigsubfsubiinvexityassumptions
AT lakshminarayanmishra multiobjectivefractionalsymmetricdualityinmathematicalprogrammingwithiciigsubfsubiinvexityassumptions
AT clementecesarano multiobjectivefractionalsymmetricdualityinmathematicalprogrammingwithiciigsubfsubiinvexityassumptions