Adaptability of F1 sunflower hybrids, created according to an integrated system of line selection for economically valuable traits in various agroclimatic zones

Purpose. Determine the ecological plasticity and productivity of F1 sunflower hybrids created on the basis of maternal and parental lines, selected according to an accelerated selection system of lines resistant to herbicides (imidazoline and sulfonylurea groups) and broomrape (Orobanche cumana Wall...

Full description

Bibliographic Details
Main Authors: В. О. Бабич, І. Ю. Боровська, Я. Ю. Шарипіна, Я. Ф. Парій, Ю. В. Симоненко
Format: Article
Language:English
Published: Ukrainian Institute for Plant Variety Examination 2021-12-01
Series:Plant Varieties Studying and Protection
Subjects:
Online Access:http://journal.sops.gov.ua/article/view/249004
Description
Summary:Purpose. Determine the ecological plasticity and productivity of F1 sunflower hybrids created on the basis of maternal and parental lines, selected according to an accelerated selection system of lines resistant to herbicides (imidazoline and sulfonylurea groups) and broomrape (Orobanche cumana Wallr.). Methods. Statistical analysis of F1 sunflower hybrids was carried out using the methods of variation statistics, regression and analysis of variance using the Microsoft Office Excel 2016 application package. Molecular biological, biotechnological and classical selection methods were used for the accelerated system of line selection. Thus, for the purpose of targeted selection of sunflower sterility fixers, we used HRG01 molecular SCAR marker to identify the gene for the restoration of pollen fertility (Rf1). To accelerate the creation of parental lines resistant to tribenuron-methyl, we used a culture of immature embryos in vitro. Results. The results of testing of F1 sunflower hybrids at Kyiv, Chernihiv, Cherkasy (Uman and Shpolianskyi districts), Khmelnytskyi, Kharkiv, Kherson and Odesa regions. The hybrids were created on the basis of selected lines, chosen according to an accelerated selection system for herbicide-resistant lines (imidazoline (IMI-hybrids) and sulfonylurea (SU-hybrids) groups) and broomrape (Orobanche cumana Wall). The standards for comparison with hybrids were: for IMI hybrids – hybrids ‘NK Neoma’ (Syngenta) and ‘ES Genesis’ (Euralis), and for SU-hybrids – ‘SY Sumiko’ (Syngenta) and ‘P64LE25’ (Pioneer). As a result, it was found that among SU-hybrids, UA 2/106 had a 3.9% higher yield when compared to the standards (‘SY Sumiko’ and ‘P64LE25’). And for IMI-hybrids it was found that hybrids UA 1/67, UA 1/66, UA 1/84 have the same yield of 2.76 t/ha as the ‘NK Neoma’ standard. IMI hybrids UA 1/92, UA 1/102 have the same yield of 2.91 t/ha as ‘ES Genesis’. Conclusions. F1 hybrids were created on the basis of the original breeding material selected due to the accelerated system of sunflower lines selection. The hybrids were analyzed according to the yield indicator. The most productive among the tested SU-hybrids was UA 2/106 hybrid, among the IMI hybrids – UA 1/67, UA 1/66, UA 1/84, UA 1/92 and UA 1/102.
ISSN:2518-1017
2518-7457