Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks
Background: Video fluoroscopic swallowing study (VFSS) is considered as the gold standard diagnostic tool for evaluating dysphagia. However, it is time consuming and labor intensive for the clinician to manually search the recorded long video image frame by frame to identify the instantaneous swallo...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-02-01
|
Series: | Diagnostics |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4418/11/2/300 |
_version_ | 1797396645459001344 |
---|---|
author | Ki-Sun Lee Eunyoung Lee Bareun Choi Sung-Bom Pyun |
author_facet | Ki-Sun Lee Eunyoung Lee Bareun Choi Sung-Bom Pyun |
author_sort | Ki-Sun Lee |
collection | DOAJ |
description | Background: Video fluoroscopic swallowing study (VFSS) is considered as the gold standard diagnostic tool for evaluating dysphagia. However, it is time consuming and labor intensive for the clinician to manually search the recorded long video image frame by frame to identify the instantaneous swallowing abnormality in VFSS images. Therefore, this study aims to present a deep leaning-based approach using transfer learning with a convolutional neural network (CNN) that automatically annotates pharyngeal phase frames in untrimmed VFSS videos such that frames need not be searched manually. Methods: To determine whether the image frame in the VFSS video is in the pharyngeal phase, a single-frame baseline architecture based the deep CNN framework is used and a transfer learning technique with fine-tuning is applied. Results: Compared with all experimental CNN models, that fine-tuned with two blocks of the VGG-16 (VGG16-FT5) model achieved the highest performance in terms of recognizing the frame of pharyngeal phase, that is, the accuracy of 93.20 (±1.25)%, sensitivity of 84.57 (±5.19)%, specificity of 94.36 (±1.21)%, AUC of 0.8947 (±0.0269) and Kappa of 0.7093 (±0.0488). Conclusions: Using appropriate and fine-tuning techniques and explainable deep learning techniques such as grad CAM, this study shows that the proposed single-frame-baseline-architecture-based deep CNN framework can yield high performances in the full automation of VFSS video analysis. |
first_indexed | 2024-03-09T00:54:22Z |
format | Article |
id | doaj.art-4fc19f13fd2a40aa8fcc4896836a2947 |
institution | Directory Open Access Journal |
issn | 2075-4418 |
language | English |
last_indexed | 2024-03-09T00:54:22Z |
publishDate | 2021-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Diagnostics |
spelling | doaj.art-4fc19f13fd2a40aa8fcc4896836a29472023-12-11T16:57:52ZengMDPI AGDiagnostics2075-44182021-02-0111230010.3390/diagnostics11020300Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural NetworksKi-Sun Lee0Eunyoung Lee1Bareun Choi2Sung-Bom Pyun3Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, KoreaDepartment of Physical Medicine and Rehabilitation, Anam Hospital, Korea University College of Medicine, Seoul 02841, KoreaDepartment of Physical Medicine and Rehabilitation, Anam Hospital, Korea University College of Medicine, Seoul 02841, KoreaDepartment of Physical Medicine and Rehabilitation, Anam Hospital, Korea University College of Medicine, Seoul 02841, KoreaBackground: Video fluoroscopic swallowing study (VFSS) is considered as the gold standard diagnostic tool for evaluating dysphagia. However, it is time consuming and labor intensive for the clinician to manually search the recorded long video image frame by frame to identify the instantaneous swallowing abnormality in VFSS images. Therefore, this study aims to present a deep leaning-based approach using transfer learning with a convolutional neural network (CNN) that automatically annotates pharyngeal phase frames in untrimmed VFSS videos such that frames need not be searched manually. Methods: To determine whether the image frame in the VFSS video is in the pharyngeal phase, a single-frame baseline architecture based the deep CNN framework is used and a transfer learning technique with fine-tuning is applied. Results: Compared with all experimental CNN models, that fine-tuned with two blocks of the VGG-16 (VGG16-FT5) model achieved the highest performance in terms of recognizing the frame of pharyngeal phase, that is, the accuracy of 93.20 (±1.25)%, sensitivity of 84.57 (±5.19)%, specificity of 94.36 (±1.21)%, AUC of 0.8947 (±0.0269) and Kappa of 0.7093 (±0.0488). Conclusions: Using appropriate and fine-tuning techniques and explainable deep learning techniques such as grad CAM, this study shows that the proposed single-frame-baseline-architecture-based deep CNN framework can yield high performances in the full automation of VFSS video analysis.https://www.mdpi.com/2075-4418/11/2/300videofluoroscopic swallowing studyaction recognitiondeep learningconvolutional neural networktransfer learning |
spellingShingle | Ki-Sun Lee Eunyoung Lee Bareun Choi Sung-Bom Pyun Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks Diagnostics videofluoroscopic swallowing study action recognition deep learning convolutional neural network transfer learning |
title | Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks |
title_full | Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks |
title_fullStr | Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks |
title_full_unstemmed | Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks |
title_short | Automatic Pharyngeal Phase Recognition in Untrimmed Videofluoroscopic Swallowing Study Using Transfer Learning with Deep Convolutional Neural Networks |
title_sort | automatic pharyngeal phase recognition in untrimmed videofluoroscopic swallowing study using transfer learning with deep convolutional neural networks |
topic | videofluoroscopic swallowing study action recognition deep learning convolutional neural network transfer learning |
url | https://www.mdpi.com/2075-4418/11/2/300 |
work_keys_str_mv | AT kisunlee automaticpharyngealphaserecognitioninuntrimmedvideofluoroscopicswallowingstudyusingtransferlearningwithdeepconvolutionalneuralnetworks AT eunyounglee automaticpharyngealphaserecognitioninuntrimmedvideofluoroscopicswallowingstudyusingtransferlearningwithdeepconvolutionalneuralnetworks AT bareunchoi automaticpharyngealphaserecognitioninuntrimmedvideofluoroscopicswallowingstudyusingtransferlearningwithdeepconvolutionalneuralnetworks AT sungbompyun automaticpharyngealphaserecognitioninuntrimmedvideofluoroscopicswallowingstudyusingtransferlearningwithdeepconvolutionalneuralnetworks |